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Summary
In this paper, we propose a novel method for a robot to detect robot-directed speech: to distinguish speech that

users speak to a robot from speech that users speak to other people or to themselves. The originality of this work
is the introduction of a multimodal semantic confidence (MSC) measure, which is used for domain classification of
input speech based on the decision on whether the speech can be interpreted as a feasible action under the current
physical situation in an object manipulation task. This measure is calculated by integrating speech, object, and
motion confidence with weightings that are optimized by logistic regression. Then we integrate this measure with
gaze tracking and conduct experiments under conditions of natural human-robot interactions. Experimental results
show that the proposed method achieves a high performance of 94% and 96% in average recall and precision rates,
respectively, for robot-directed speech detection.

1. INTRODUCTION

Robots are now being designed to be a part of the ev-
eryday lives of ordinary people in social and home en-
vironments. One of the key issues for practical use of
such robots is the development of user-friendly interfaces.
Speech recognition is one of our most effective communi-
cation tools for use in a human-robot interface. In recent
works, many systems using speech-based human-robot in-
terfaces have been implemented, such as [Asoh 99, Ishi
06]. For such an interface, the functional capability of
detecting robot-directed (RD) speech is crucial. For ex-
ample, a user’s speech directed to another human listener
should not be recognized as commands directed to a robot.

To resolve this issue, many works have used human

physical behaviors to estimate the target of the user’s speech.
Lang et al. [Lang 03] proposed a method for a robot
to detect the direction of a person’s attention based on
face recognition, sound source localization, and leg de-
tection. Mutlu et al. [Mutlu 09] conducted experiments
under conditions of human-robot conversation, and they
studied how a robot could establish the participant roles
of its conversational partners using gaze cues. Yonezawa
et al. [Yonezawa 09] proposed an interface for a robot to
communicate with users based on detecting the gaze di-
rection during their speech. However, this kind of method
raises the possibility that users may say something irrele-
vant to the robot while they are looking at it. Consider a
situation where users A and B are talking while looking at
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the robot in front of them (Figure 1).

A: Cool robot! What can it do?
B: It can understand your command, like “Bring me the

red box.”

Note that the speech here is referential, not directed to the
robot. Moreover, even if user B makes speech that sounds
like RD speech (“Bring me the red box”), she does not
really want to give such an order because no red box exists
in the current situation. How can we build a robot that
responds appropriately in this situation?

To settle such an issue, the proposed method is based
not only on gaze tracking but also on domain classifica-
tion of the input speech into RD speech and out-of-domain
(OOD) speech. Domain classification for robots in pre-
vious works were based mainly on using linguistic and
prosodic features. As an example, a method based on key-
word spotting has been proposed by [Kawahara 98]. How-
ever, in using such a method it is difficult to distinguish
RD speech from explanations of system usage (as in the
example of Figure 1). It becomes a problem when both
types of speech contain the same “keywords.” To settle
this problem, a previous work [Takiguchi 08] showed that
the difference in prosodic features between RD speech and
other speech usually appears at the head and the tail of the
speech, and they proposed a method to detect RD speech
by using such features. However, their method also raised
the issue of requiring users to adjust their prosody to fit
the system, which causes them an additional burden.

In this work, the robot executed an object manipula-
tion task in which it manipulates objects according to a
user’s speech. An example of this task in a home envi-
ronment is a user telling a robot to “Put the dish in the
cupboard.” Solving this task is fundamental for assistive
robots. In this task, we assume that a user orders the
robot to execute an action that is feasible in the current
situation. Therefore, the word sequences and the object
manipulation obtained as a result of the process of under-
standing RD speech, should be possible and meaningful
in the given situation. In contrast, word sequences and
the object manipulation obtained by the process of under-
standing OOD speech would not be feasible. Therefore,
we can distinguish between RD and OOD speech by us-
ing the feasibility for the corresponding word sequence
and the object manipulation obtained from a speech un-
derstanding process as a measure. Based on this concept,
we developed a multimodal semantic confidence (MSC)
measure. A key feature of MSC is that it is not based
on using prosodic features of input speech as with the
method described above; rather, it is based on semantic
features that determine whether the speech can be inter-

It can understand your
command, like “Bring me

the red box.”

Cool robot!
What can it do?

Fig. 1 People talking while looking at a robot.

preted as a feasible action under the current physical situ-
ation. On the other hand, for an object manipulation task
robots should deal with speech and image signals and to
carry out a motion according to the speech. Therefore,
the MSC measure is calculated by integrating information
obtained from speech, object images and robot motion.

The rest of this paper is organized as follows. Section 2
gives the details of the object manipulation task. Section
3 describes the proposed RD speech detection method.
The experimental methodology and results are presented
in Section 4, and Section 5 gives a discussion. Finally,
Section 6 concludes the paper.

2. Object Manipulation Task

In this work, humans use a robot to perform an object
manipulation task. Figure 2 and Figure 3 show the robot
used in this task. It consists of a manipulator with 7 de-
grees of freedom (DOFs), a 4-DOF multi-fingered grasper,
a SANKEN CS-3e directional microphone for audio sig-
nal input, a Point Grey Research Bumblebee 2 stereo vi-
sion camera for video signal input, a MESA Swiss Ranger
SR4000 infrared sensor for 3-dimensional distance mea-
surement, a Logicool Qcam Pro 9000 camera for human
gaze tracking, and a head unit for robot gaze expression.

In the object manipulation task, users sit in front of the
robot and command the robot by speech to manipulate ob-
jects on a table located between the robot and the user.
Figure 4 shows an example of this task. In this figure,
the robot is told to place Object 1 (Kermit) on Object 2
(big box) by the command speech “Place-on Kermit big
box”∗1, and the robot executes an action according to this
speech. The solid line in Figure 4 shows the trajectory
of the moving object manipulated by the robot. Figure 5
shows the sequential photographs of the robot executing
an action according to command speech “Place-on Bar-

∗1 Commands made in Japanese have been translated into English
in this paper.
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Fig. 2 Robot used in the object manipulation task.

Fig. 3 Cameras, microphone, sensor and head unit of the robot.

bazoo∗2 red box”.

Commands used in this task are represented by a se-
quence of phrases, each of which refers to a motion, an
object to be manipulated (“trajector”), or a reference ob-
ject for the motion (“landmark”). In the case shown in Fig-
ure 4, the phrases for the motion, trajector, and landmark
are “Place-on,” “Kermit,” and “big box,” respectively. More-
over, fragmental commands without a trajector phrase or
a landmark phrase, such as “Place-on big box” or just
“Place-on,” are also acceptable.

To execute a correct action according to such a com-
mand, the robot must understand the meaning of each word
in it, which is grounded by the physical situation. The
robot must also have a belief about the context information
to estimate the corresponding objects for the fragmental
commands. In this work, we used the speech understand-
ing method proposed by [Iwahashi 07] to interpret the in-
put speech as a possible action for the robot under the cur-
rent physical situation. However, for an object manipu-
lation task in a real-world environment, there may exist
OOD speech such as chatting, soliloquies, or noise. Con-
sequently, an RD speech detection method should be used.

∗2 Kermit and Barbazoo are the stuffed toy’s names used in our ex-
periment.

Fig. 4 Example of object manipulation tasks.

3. Proposed RD Speech Detection Method

The proposed RD speech detection method is based on
integrating gaze tracking and the MSC measure. A flowch-
art is given in Figure 6. First, a Gaussian mixture model
based voice activity detection method (GMM-based VAD)
[Lee 04] is carried out to detect speech from the continu-
ous audio signal, and gaze tracking is performed to esti-
mated the gaze direction from the camera images∗3 . If the
proportion of the user’s gaze at the robot during her/his
speech is higher than a certain threshold η, the robot judges
that the user was looking at it while speaking. The speech
during the periods when the user is not looking at the
robot is rejected. Then, for the speech detected while
the user was looking at the robot, speech understanding
is performed to output the indices of a trajector object and
a landmark object, a motion trajectory, and correspond-
ing phrases, each of which consists of recognized words.
Then, three confidence measures, i.e., for speech (CS), ob-
ject image (CO) and motion (CM ), are calculated to eval-
uate the feasibilities of the outputted word sequence, the
trajector and landmark, and the motion, respectively. The
weighted sum of these confidence measures with a bias is
inputted to a logistic function. The bias and the weight-
ings {θ0, θ1, θ2, θ3}, are optimized by logistic regression
[Hosmer 09]. Here, the MSC measure is defined as the
output of the logistic function, and it represents the prob-
ability that the speech is RD speech. If the MSC measure
is higher than a threshold δ, the robot judges that the input
speech is RD speech and executes an action according to
it. In the rest of this section, we give details of the speech
understanding process and the MSC measure.

∗3 In this work, gaze direction was identified by human face angle.
We used faceAPI (http://www.seeingmachines.com) to extract hu-
man face angles from images captured by a camera.
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Fig. 5 Sequential photographs of the robot executing an action according to utterance “Place-on Barbazoo red box”.

Audio signalCamera images

GMM based VADGaze Tracking

Is human user looking at
the robot during his speaking?

Physical situations YES

NO

Speech Understanding

Speech Confidence
Measure CS

Object Confidence
Measure CO

Motion Confidence
Measure CM

θ1 θ2 θ3

θ0

MSC measure CMS (s,O, q)

CMS(s,O,q) > δ?

YES
RD speech

NO

OOD speech

Fig. 6 Flowchart of the proposed RD speech detection method.

3 ·1 Speech Understanding

Given input speech s and a current physical situation
consisting of object information O and behavioral context
q, speech understanding selects the optimal action a based
on a multimodal integrated user model. O is represented
as O = {(o1,f , o1,p), (o2,f , o2,p) . . .(om,f , om,p)}, which in-
cludes the visual features oi,f and positions oi,p of all ob-
jects in the current situation, where m denotes the number
of objects and i denotes the index of each object that is
dynamically given in the situation. q includes informa-
tion on which objects were a trajector and a landmark in
the previous action and on which object the user is now
holding. a is defined as a = (t, ξ), where t and ξ denote
the index of trajector and a trajectory of motion, respec-
tively. A user model integrating the five belief modules –
(1) speech, (2) object image, (3) motion, (4) motion-object
relationship, and (5) behavioral context – is called an inte-
grated belief. Each belief module and the integrated belief
are learned by the interaction between a user and the robot
in a real-world environment.

§ 1 Lexicon and Grammar

The robot has basic linguistic knowledge, including a
lexicon L and a grammar Gr. L consists of pairs of a word
and a concept, each of which represents an object image
or a motion. The words are represented by the sequences
of phonemes, each of which is represented by HMM us-
ing mel-scale cepstrum coefficients and their delta param-
eters (25-dimensional) as features. The concepts of object
images are represented by Gaussian functions in a multi-
dimensional visual feature space (size, color (L∗, a∗, b∗),
and shape). The concepts of motions are represented by
HMMs using the sequence of three-dimensional positions
and their delta parameters as features.

The word sequence of speech s is interpreted as a con-
ceptual structure z = [(α1, wα1 ), (α2, wα2), (α3, wα3)],
where αi represents the attribute of a phrase and has a
value among {M,T,L}. wM , wT and wL represent the
phrases describing a motion, a trajector, and a landmark,
respectively. For example, the user’s utterance “Place-on
Kermit big box” is interpreted as follows: [(M , Place-on),
(T , Kermit), (L, big box)]. The grammar Gr is a statisti-
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cal language model that is represented by a set of occur-
rence probabilities for the possible orders of attributes in
the conceptual structure.
§ 2 Belief modules and Integrated Belief

Each of the five belief modules in the integrated belief
is defined as follows.

Speech BS: This module is represented as the log prob-
ability of speech s conditioned by z, under grammar Gr.

Object image BO: This module is represented as the
log likelihood of wT and wL given the trajector’s and the
landmark’s visual features ot,f and ol,f .

Motion BM : This module is represented as the log
likelihood of wM given the trajector’s initial position ot,p,
the landmark’s position ol,p, and trajectory ξ.

Motion-object relationship BR: This module repre-
sents the belief that in the motion corresponding to wM ,
features ot,f and ol,f are typical for a trajector and a land-
mark, respectively. This belief is represented by a multi-
variate Gaussian distributionof vector [ot,f , ot,f − ol,f , ol,f ]T .

Behavioral context BH : This module represents the
belief that the current speech refers to object o, given be-
havioral context q.

Given weighting parameter set Γ=
{
γ1..., γ5

}
, the de-

gree of correspondence between speech s and action a is
represented by integrated belief function Ψ, written as

Ψ(s,a,O,q,Γ) =

max
z,l

(
γ1 logP (s|z)P (z;Gr) [BS]

+γ2

(
logP (ot,f |wT )+ logP (ol,f |wL)

)
[BO]

+γ3 logP (ξ|ot,p, ol,p,wM) [BM ]

+γ4 logP (ot,f , ol,f |wM) [BR]

+γ5

(
BH(ot,q)+ BH(ol,q)

))
, [BH ]

(1)
where l denotes the index of landmark, ot and ol denote
the trajector and landmark, respectively. Conceptual struc-
ture z and landmark ol are selected to maximize the value
of Ψ. Then, as the meaning of speech s, corresponding
action â is determined by maximizing Ψ:

â = (t̂, ξ̂) = argmax
a

Ψ(s,a,O,q,Γ). (2)

Finally, action â = (t̂, ξ̂), index of selected landmark l̂,
and conceptual structure (recognized word sequence) ẑ are
outputted from the speech understanding process.
§ 3 Learning the Parameters

In the speech understanding, each belief module and the
weighting parameters Γ in the integrated belief are learned
online through human-robot interaction in a natural way in

an environment in which the robot is used [Iwahashi 07].
For example, a user shows an object to the robot while
uttering a word describing the object to make the robot
learn the phoneme sequence of the spoken word which
refers to the object and the Gaussian parameters represent-
ing the object image concept based on Bayesian learning.
In addition, the user orders the robot to move an object by
making an utterance and a gesture, and the robot acts in
response. If the robot responds incorrectly, the user slaps
the robot’s hand, and the robot acts in a different way in
response. The weighting parameters Γ are learned incre-
mentally, online with minimum classification error learn-
ing [Katagiri 98], through such interaction. This learning
process can be conducted easily by a non-expert user. In
contrast, other speech understanding methods need an ex-
pert to manually adjust the parameters in the methods, and
the operation is not practical for ordinary users. Therefore,
in comparison with other methods, the speech understand-
ing method used in this work has an advantage in that it
adapts to different environments, depending on the user.

3 ·2 MSC Measure

Next, we describe the proposed MSC measure. MSC
measure CMS is calculated based on the outputs of speech
understanding and represents an RD speech probability.
For input speech s and current physical situation (O, q),
speech understanding is performed first, and then CMS is
calculated by the logistic regression as

CMS(s,O,q) = P (domain = RD|s,O,q)

=
1

1 + e−(θ0+θ1CS+θ2CO+θ3CM )
.

(3)

Logistic regression is a type of predictive model that can
be used when the target variable is a categorical variable
with two categories, which is quite suitable for the domain
classification problem in this work. In addition, the output
of the logistic function has a value in the range from 0.0 to
1.0, which can be used directly to represent an RD speech
probability.

Finally, given a threshold δ, speech s with an MSC mea-
sure higher than δ is treated as RD speech. The BS , BO,
and BM are also used for calculating CS , CO, and CM ,
each of which is described as follows.

§ 1 Speech Confidence Measure

Speech confidence measure CS is used to evaluate the
reliability of the recognized word sequence ẑ. It is calcu-
lated by dividing the likelihood of ẑ by the likelihood of
a maximum likelihood phoneme sequence with phoneme
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network Gp, and it is written as

CS(s, ẑ) =
1

n(s)
log

P (s|ẑ)
maxu∈L(Gp) P (s|u)

, (4)

where n(s) denotes the analysis frame length of the input
speech, P (s|ẑ) denotes the likelihood of ẑ for input speech
s and is given by a part of BS , u denotes a phoneme se-
quence, and L(Gp) denotes a set of possible phoneme se-
quences accepted by phoneme network Gp. For speech
that matches robot command grammar Gr, CS has a greater
value than speech that does not match Gr.

The speech confidence measure is conventionally used
as a confidence measure for speech recognition [Jiang 05].
The basic idea is that it treats the likelihood of the most
typical (maximum-likelihood) phoneme sequences for the
input speech as a baseline. Based on this idea, the object
and motion confidence measures are defined as follows.
§ 2 Object Confidence Measure

Object confidence measure CO is used to evaluate the
reliability that the outputted trajector ot̂ and landmark ol̂

are referred to by ŵT and ŵL. It is calculated by dividing
the likelihood of visual features ot̂,f and ol̂,f by a baseline
obtained by the likelihood of the most typical visual fea-
tures for the object models of ŵT and ŵL. In this work,
the maximum probability densities of Gaussian functions
are treated as these baselines. Then, the object confidence
measure CO is written as

CO(ot̂,f ,ol̂,f , ŵT , ŵL) =

log
P (ot̂,f |ŵT )P (ol̂,f |ŵL)

maxof P (of |ŵT )maxof P (of |ŵL)
,

(5)

where P (ot̂,f | ŵT ) and P (ol̂,f | ŵL) denote the likelihood
of ot̂,f and ol̂,f and are given by BO, and maxof P (of |
ŵT ) and maxof P (of | ŵL) denote the maximum proba-
bility densities of Gaussian functions, and of denotes the
visual features in object models.

For example, Figure 7(a) describes a physical situation
under which a low object confidence measure was ob-
tained for input OOD speech “There is a red box.” The
examples in Figure 7 are selected from the raw data of the
experimental results. Here, by the speech understanding
process, the input speech was recognized as a word se-
quence “Raise red box.” Then, an action of the robot rais-
ing object 1 was outputted (solid line) because the “red
box” did not exist and thus object 1 with the same color
was selected as a trajector. However, the visual feature of
object 1 was very different from “red box,” resulting in a
low value of CO.
§ 3 Motion Confidence Measure

The confidence measure of motion CM is used to evalu-
ate the reliability that the outputted trajectory ξ̂ is referred

to by ŵM . It is calculated by dividing the likelihood of ξ̂

by a baseline that is obtained by the likelihood of the most
typical trajectory ξ̃ for the motion model of ŵM . In this
work, ξ̃ is written as

ξ̃ = argmax
ξ,o

traj
p

P (ξ|otraj
p , ol̂,p, ŵM), (6)

where otraj
p denotes the initial position of the trajector. ξ̃

is obtained by treating otraj
p as a variable. The likelihood

of ξ̃ is the maximum output probability of HMMs. In this
work, we used the method proposed by [Tokuda 95] to
obtain this probability. Different from ξ̂, the trajector’s
initial position of ξ̃ is unconstrained, and the likelihood of
ξ̃ has a greater value than ξ̂. Then, the motion confidence
measure CM is written as

CM(ξ̂, ŵM) = log
P (ξ̂|ot̂,p, ol̂,p, ŵM)

maxξ,otraj
p

P (ξ|otraj
p , ol̂,p, ŵM)

,

(7)
where P (ξ̂|ot̂,p, ol̂,p,ŵM ) denotes the likelihood of ξ̂ and
is given by BM .

For example, Figure 7(b) describes a physical situation
under which a low motion confidence measure was ob-
tained for input OOD speech “Bring me that Chutotoro.”
Here, by the speech understanding process, the input speech
was recognized as a word sequence “Move-away Chuto-
toro.” Then, an action of the robot moving away object 1
from object 2 was outputted (solid line). However, the typ-
ical trajectory of “move-away” is for one object to move
away from another object that is close to it (dotted line).
Here, the trajectory of outputted action was very different
from the typical trajectory, resulting in a low value of CM .

§ 4 Optimization of Weights
We now consider the problem of estimating weight Θ.

The ith training sample is given as the pair of input signal
(si,Oi,qi) and teaching signal di. Thus, the training set
T

N contains N samples:

T
N = {(si,Oi,qi, di)|i = 1, ...,N}, (8)

where di is 0 or 1, which represents OOD speech or RD
speech, respectively. The likelihood function is written as

P (d|Θ) =

N∏
i=1

(CMS(si,Oi,qi))di

(1−CMS(si,Oi,qi))1−di

,

(9)
where d= (d1, . . . , dN). Θ is optimized by the maximum-
likelihood estimation of Eq. (9) using Fisher’s scoring al-
gorithm [Kurita 92].
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Input speech: “There is a red box.”
Recognized as: [Raise red box.]

(a) Case for object confidence measure

Input speech: “Bring me that Chutotoro.”
Recognized as: [Move-away Chutotoro.]

(b) Case for motion confidence measure

Fig. 7 Example cases where object and motion confidence measures are low. These examples are selected from the raw
data of the experimental results.

4. Experiments

4 ·1 Experimental Setting
We first evaluated the performance of MSC. This eval-

uation was performed by an off-line experiment by simu-
lation where gaze tracking is not used, and speech is ex-
tracted manually without the GMM based VAD to avoid
its detection errors. The weighting set Θ and the thresh-
old δ were also optimized in this experiment. Then we
performed an on-line experiment with the robot to evalu-
ate the whole system.

The robot lexicon L used in both experiments has 50
words, including 31 nouns and adjectives representing 40
objects and 19 verbs representing ten kinds of motions.
Figure 8 shows some of the objects used in the experi-
ments. Figure 9 shows the examples for each motion. The
solid line in each example represents the motion trajec-
tory. L also includes five Japanese postpositions. Dif-
ferent from other words in L, each of the postpositions
is not associated with a concept. By using the postposi-
tions, users can speak a command in a more natural way.
The parameter set Γ in Eq. (1) was γ1 = 1.00, γ2 = 0.75,
γ3 = 1.03, γ4 = 0.56, and γ5 = 1.88.

The speech detection algorithm was run on a Dell Pre-
cision 690 workstation, with an Intel Xeon 2.66GHz CPU
and 4GB memory for speech understanding and the cal-
culation of MSC measure. In the on-line experiment, we
added another Dell Precision T7400 workstation with an
Intel Xeon 3.2GHz CPU and a 4GB memory for the image
processing and gaze tracking.

4 ·2 Off-line Experiment by Simulation
§ 1 Setting

The off-line experiment was conducted under both clean
and noisy conditions using a set of pairs of speech s and
scene information (O, q). Figure 7(a) shows an example

Fig. 8 Some of the objects used in the experiments.

of scene information. The yellow box on object 3 rep-
resents the behavioral context q, which means object 3
was manipulated most recently. We prepared 160 different
such scene files, each of which included three objects on
average. We also prepared 160 different speech samples
(80 RD speech and 80 OOD speech) and paired them with
the scene files. The RD speech samples included words
that represent 40 kinds of objects and ten kinds of mo-
tions, which were learned beforehand in lexicon L. Each
RD and OOD speech sample included 2.8 and 4.1 words
on average, respectively. Table 1 shows examples of the
speech spoken in the experiment. In addition, a correct
motion phrase, correct trajectory, and landmark objects are
given for each RD speech-scene pair. We then recorded
the speech samples under both clean and noisy conditions
as follows.

• Clean condition: We recorded the speech in a sound-
proof room without noise. A subject sat on a chair
one meter from the SANKEN CS-3e directional mi-
crophone and read out a text in Japanese.

• Noisy condition: We added dining hall noise whose
level was from 50 to 52 dBA to each speech record
gathered under a clean condition.

We gathered the speech records from 16 subjects, in-
cluding eight males and eight females. All subjects were
native Japanese speakers. All subjects were instructed to
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raise put-down∗ move-closer∗ move-away∗ rotate

place-on∗ jump-over place-on the middle place-on the left side place-on the right side
Fig. 9 Examples for each of the 10 kinds of motions used in the experiments. “ ∗ ” means that synonymous verbs are

given in the lexicon for this motion.

speak naturally as if they were speaking to another hu-
man listener. As a result, 16 sets of speech-scene pairs
were obtained, each of which included 320 pairs (160 for
clean and 160 for noisy conditions). These pairs were
inputted into the system. For each pair, speech under-
standing was first performed, and then the MSC measure
was calculated. During speech understanding, a Gaus-
sian mixture model based noise suppression method [Fu-
jimoto 06] was performed, and ATRASR [Nakamura 06]
was used for phoneme and word sequence recognition.
With ATRASR, accuracies of 83% and 67% in phoneme
recognition were obtained under the clean and noisy con-
ditions, respectively.

The evaluation under the clean condition was performed
by leave-one-out cross-validation: 15 subjects’ data were
used as a training set to learn the weighting Θ in Eq. (3),
and the remaining one subject’s data were used as a test
set and repeated 16 times. By cross-validation, the gen-
eralization performance for different speakers was evalu-
ated. The average values of the weighting Θ̂ learned by
the training set in cross-validation were used for the eval-
uation under the noisy condition, where all noisy speech-
scene pairs collected from 16 subjects were treated as a
test set.

System performances was evaluated by recall and pre-
cision rates, which were defined as follows:

Recall =
N cor

N total
, (10)

Precision =
N cor

Ndet
, (11)

where N cor denotes the number of RD speech correctly
detected, N total denotes the total number of existing RD
speech, Ndet denotes the total number of speech detected
as RD speech by the MSC measure.

Finally, for comparison, four cases were evaluated for
RD speech detection by using: (1) the speech confidence
measure only, (2) the speech and object confidence mea-
sures, (3) the speech and motion confidence measures and,

Table 1 Examples of the speech spoken in the experiments.

RD speech OOD speech

Move-away Grover. Good morning.
Place-on Kermit small box. How about lunch?

Rotate Chutotoro. There is a big Barbazoo.
Raise red Elmo. Let’s do an experiment.

(4) the MSC measure.
We also evaluated the speech understanding using the

RD speech-scene pairs. Differences between the output
motion phrase, trajectory, and landmark objects and the
given ones were treated as an error in speech understand-
ing.
§ 2 Results

The average precision-recall curves for RD speech de-
tection over 16 subjects under clean and noisy conditions
are shown in Figure 10. The performances of each of four
cases are shown by “Speech,” “Speech + Object,” “Speech
+ Motion,” and “MSC.” From the figures, we found that
(1) the MSC outperforms all others for both clean and
noisy conditions and, (2) both object and motion confi-
dence measures helped to improve performance. The av-
erage maximum F-measures under clean and noisy condi-
tions are shown in Figure 11. By comparing it with the
speech confidence measure only, MSC achieved an abso-
lute increase of 5% and 12% for clean and noisy condi-
tions, respectively, indicating that MSC was particularly
effective under the noisy condition. We also performed the
paired t-test. Under the clean condition, there were statis-
tical differences between (1) Speech and Speech + Object
(p < 0.01), (2) Speech and Speech + Motion (p < 0.05),
and (3) Speech and MSC (p < 0.01). Under the noisy
condition, there were statistical differences (p < 0.01) be-
tween Speech and all other cases.

Examples of the raw data of the experimental results
are shown in Figure 7 and Figure 12. The examples in
Figure 7 are for OOD speech and have been explained in
Sections 3.2.2 and 3.2.3. The examples in Figure 12 are
for RD speech “Place-on Elmo big box” and “Jump-over
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Speech
Speech + Object
Speech + Motion
MSC (Speech + Object + Motion)

(a) Under clean condition

Speech
Speech + Object
Speech + Motion
MSC

(b) Under noisy condition

Fig. 10 Average precision-recall curves obtained in the off-line experiment.

(a) Under clean condition (b) Under noisy condition

Fig. 11 Average maximum F-measures obtained in the off-line experiment.

(a) “Place-on Elmo big box” (b) “Jump-over Barbazoo Totoro”

Fig. 12 Examples selected from the raw data of the experiment.
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Table 2 Means (m) and variances (v) of weighted confidence measures
for all RD and OOD speech obtained under noisy conditions.

RD OOD
CS CO CM CS CO CM

m −0.71 −0.88 −0.30 −3.8 −6.0 −3.3
v 1.1 0.55 0.72 6.4 130 23

Table 3 Accuracy of RD speech understanding.

Total Detected
Clean 99.8% 100%

Noisy 96.3% 98.9%

Barbazoo Totoro”. These utterances were successfully de-
tected by the MSC measure. The processing times (sec-
onds) spent on the speech understanding process and the
MSC-based domain classification was 1.09 and 1.36 for
the examples shown in Figure 6(a) and (b), respectively,
1.39 and 1.36 for the examples shown in Figure 11(a) and
(b), respectively. These times indicated that our method
could respond quickly in practical human-robot interac-
tions in real time. Table 2 shows the means and variances
of the weighted confidence measures for all RD and OOD
speech obtained under the noisy condition. Notice that
the variances of CO and CM have large values for OOD
speech, which means it is difficult to perform RD speech
detection using CO or CM only.

In the experiment, weight Θ and threshold δ were opti-
mized under the clean condition. The optimized Θ̂ were:
θ̂0 = 5.9, θ̂1 = 0.00011, θ̂2 = 0.053, and θ̂3 = 0.74. The
optimized δ̂ was set to 0.79, which maximized the aver-
age F-measure. This means that a piece of speech with
an MSC measure of more than 0.79 will be treated as RD
speech and the robot will execute an action according to
this speech. The above Θ̂ and δ̂ were used in the on-line
experiment.

Finally, the accuracies of speech understanding using
all RD speech and RD speech detected with the proposed
method are shown in Table 3, where “Total” and “De-
tected” represent all RD speech and the detected RD speech,
respectively, and “Clean” and “Noisy” represent clean and
noisy conditions, respectively.

4 ·3 On-line Experiment Using the Robot
§ 1 Setting

In the on-line experiment, the whole system was evalu-
ated by using the robot. In each session of the experiment,
two subjects, an “operator” and a “ministrant,” sat in front
of the robot at a distance of about one meter from the mi-
crophone. The operator ordered the robot to manipulate
objects in Japanese. He was also allowed to chat freely
with the ministrant. Figure 13 shows an example of this

Fig. 13 Example of on-line experiment.

experiment. The threshold η of gaze tracking was set to
0.5, which means that if the proportion of operator’s gaze
at the robot during input speech was higher than 50%, the
robot judged that the speech was made while the operator
was looking at it.

We conducted a total of 4 sessions of this experiment
using 4 pairs of subjects, and each session lasted for about
50 minutes. All subjects were adult males. As with the
off-line experiment, the subjects were instructed to speak
to the robot as if they were speaking to another human lis-
tener. There was constant surrounding noise of about 48
dBA from the robot’s power module in all sessions. For
comparison, five cases were evaluated for RD speech de-
tection by using (1) gaze only, (2) gaze and speech con-
fidence measure, (3) gaze and speech and object confi-
dence measures, (4) gaze and speech and motion confi-
dence measures and, (5) gaze and MSC measure.
§ 2 Results

During the experiment, a total of 983 pieces of speech
were made, each of which was manually labeled as ei-
ther RD or OOD. The numbers of them are shown in Ta-
ble 4. “w/ gaze and w/o gaze” show the numbers of speech
productions that were made while the operator was look-
ing/not looking at the robot. “RD/OOD ” shows the num-
bers of RD/OOD speech productions that were manually
labeled after the experiment. Aside from the RD speech,
there was also a lot of OOD speech made while the sub-
jects were looking at the robot (see “w/ gaze” in Table 4).

The accuracies of speech understanding were 97.6% and
98.1% for all RD speech and the detected RD speech,
respectively. The average recall and precision rates for
RD speech detection are shown in Figure 14. The perfor-
mances of each of five cases are shown by “Gaze,” “Gaze
+ Speech,” “Gaze + Speech + Object,” “Gaze + Speech
+ Motion,” and “Gaze + MSC,” respectively. By using
gaze only, an average recall rate of 94% was obtained (see
“Gaze” column in Figure 14(a)), which means that almost
all of the RD speech was made while the operator was
looking at the robot. The recall rate dropped to 90% by
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Table 4 Numbers of speech productions in the on-line experiment.

w/ gaze w/o gaze Total
RD 155 10 165

OOD 553 265 818
Total 708 275 983

integrating gaze with speech confidence measure, which
means some RD speech was rejected by the speech confi-
dence measure by mistake. However, by integrating gaze
with MSC, the recall rate returned to 94% because the
mis-rejected RD speech was correctly detected by MSC.
In Figure 14(b), the average precision rate by using gaze
only was 22%. However, by using MSC, these instances
of OOD speech were correctly rejected, resulting in a high
precision rate of 96%, which means the proposed method
is particularly effective under situations where users make
a lot of OOD speech while looking at a robot.

5. Discussion

5 ·1 Using in a Real World Environment
Although the proposed method was evaluated in our lab-

oratory, we consider that our method could be used for
real world environments because the used speech under-
standing method is adaptable to different environments. In
some cases, however, physical conditions can dynamically
change. For example, lighting conditions may change sud-
denly due to sunlight. The development of a method that
works robustly in such variable conditions is future work.

5 ·2 Extended Applications
This work can be extended in many kinds of ways, and

we mention some of them. Here, we evaluated the MSC
measure under situations where users usually order the
robot while looking at it. However, users possibly or-
der a robot without looking at it under some situations.
For example, in such an object manipulation task where
a robot manipulates objects together with a user, the user
may make an order while looking at the object which he
is manipulating instead of looking at the robot itself. For
such tasks, the MSC measure should be used separately
without integrating it with gaze. Therefore, a method that
automatically decides whether to use the gaze information
according to the task and user situation should be imple-
mented.

Moreover, aside from the object manipulation task, the
MSC measure can also be extended to the multi-task dia-
log including both the physically grounded and ungrounded
tasks. In the physically ungrounded tasks, users’ utter-
ances express no immediate physical objects or motions.

For such dialog, a method that automatically switches be-
tween the speech confidence and MSC measures should
be implemented. In the future works, we will evaluate the
MSC measure for various dialog tasks.

In addition, we can use the MSC to develop an advanced
interface for human-robot interaction. The RD speech prob-
ability represented by MSC can be used to provide feed-
back such as the utterance “Did you speak to me?”, and
this feedback should be made under situations where the
MSC measure has an ambiguous value. Moreover, each
of the object and motion confidence measures can be used
separately. For example, if the object confidence measures
for all objects in a robot’s vision were particularly low,
an active exploration should be executed by the robot to
search for a feasible object in its surroundings, or an utter-
ance such as “I cannot do that” should be made for situa-
tions where the motion confidence measure is particularly
low.

Finally, in this work, we evaluated the MSC measure
obtained by integrating speech, object and motion confi-
dence measures. In addition, we can consider the use of
the confidence measure obtained from the object-motion
relationship. In the future, we will evaluate the effect of
using this confidence measure.

6. Conclusion

This paper described an RD speech detection method
that enables a robot to distinguish the speech to which it
should respond in an object manipulation task by com-
bining speech, visual, and behavioral context with human
gaze. The remarkable feature of the method is the intro-
duction of the MSC measure. The MSC measure evalu-
ates the feasibility of the action which the robot is going
to execute according to the users’ speech under the cur-
rent physical situation. The experimental results clearly
showed that the method is very effective and provides an
essential function for natural and safe human-robot inter-
action. Finally, we would emphasize that the basic idea
adopted in the method is applicable to a broad range of
human-robot dialog tasks.
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