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for Scientific Data Retrieval

Shin’ichi Takeuchi∗a) Non-member, Komei Sugiura∗ Non-member

Yuhei Akahoshi∗ Non-member, Koji Zettsu∗ Non-member

We consider the problem of searching scientific data from heterogeneous ocean of scientific data repositories. This
problem is challenging because scientific data contain relatively few text information comparing other search targets
such as web pages. On the other hand, the metadata of scientific data contain other characteristic information such
as spatio-temporal information. Although using these information has possibility to improve the search performance,
many widely adopted scientific data search engines use these information only for narrowing down the search results.
In this paper, we propose a novel query generation method using spatial, temporal, and text information based on
pseudo relevance feedback. The proposed method generates new spatio-temporal queries from initial search results.
By using these queries, the search results are re-ranked so that more related results can obtain higher ranks. The ex-
perimental results show that the proposed method outperforms a baseline method when search targets do not have rich
text information.
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1. Introduction

Data-driven science, or e-Science, is a new paradigm that
goes further than mere experimental and theoretical research,
and computer simulation (1). In this paradigm, scientific data,
consisted by observations and results of scientific activities,
are shared and re-used so that scientists can accelerate their
research activities. Free and open access to publications and
scientific data provided by publicly funded research offers
significant social benefits.

This has led to an explosion in the availability of scien-
tific datasets (2), including the raw data directly extracted by
measuring instruments and also the derived data from com-
putational models and simulations (3). These datasets can be
stored on-line in large volume in public or private repositories
and made accessible to users within a scientific community
or beyond to foster interorganizational and inter-disciplinary
research that can accelerate scientific discovery (4), (5). Such
published datasets, which number in the millions, continue
to grow at an impressive rate and are long-term archived in
affordable cloud storage and on disks (6).

For a scientist, discovering an appropriate set of datasets is
critical for computations and effective experimental simula-
tions. However, up to now, the selection process has typically
been haphazard: researchers recycle datasets with which they
are familiar, or that they have heard about through word-of-
mouth. No good tools are available for dataset discovery be-
cause no widely used resources indexes them.

Several search engines such as World Data System (WDS)
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† and Pangaea †† have been designed for discovering scien-
tific datasets. Although these search engines are widely used,
millions of datasets are searched by an engine that retrieves
and ranks them using a simple keyword-based matching al-
gorithm and by aggregating the results. One drawback with
such approaches is that the accuracy of the results is largely
dependent on the ability of users to formulate queries by key-
words.

In this paper, we describe a novel query generation method
for searching scientific datasets that performs the following
two crucial functions:
• extends conventional text-based Pseudo Relevance

Feedback methods by using space and time information
(Section 4.1),
• scores the space and time distances by the Bhattacharyya

distance among datasets and uses this information to
rank the search results (Section 4.2).

2. Related Work

2.1 Scientific Data Repository At first, we clarify
the definition of a dataset. A dataset is consisted by raw data
and metadata. Raw data are consisted by sets of observations
or results of scientific activities. Metadata represent several
features of raw data(e.g. spatial, temporal, and other text in-
formation such as author name, citation, abstract, observed
parameter, etc.) Figure 1 shows an example of dataset de-
scription. This dataset has spatial, temporal, and text infor-
mation such as title, author, abstract, etc. This information is
used as metadata of the dataset. The variety of information in
metadata of a dataset is depend on the domain of dataset and
the data repository.

† http://www.icsu-wds.org/
†† http://www.pangaea.de/
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Figure 1. An example of dataset description. This de-
scription contains spatial, temporal, and several piece of
text information such as title, author, abstract, etc. This
information is used as a metadata of the dataset. The va-
riety of information in the metadata is dependent on the
domain of the dataset and the data repository.

Finding datasets for scientific work requires discovering
the right piece of data across a wide range of interrelated
scientific domains, including interdisciplinary research about
a particular natural phenomenon. By using the current sys-
tems or portals for searching for datasets, if a user lacks prior
knowledge about the data attributes and terminology, discov-
ering relationships among them is very difficult.

Several search engines have been designed for discovering
scientific datasets. One of the biggest scientific data reposito-
ries is the World Data System (WDS), which provides a por-
tal for searching through a huge amount of scientific datasets
†. The search results are ranked by its relevance to the input
query.

WDS incorporates scientific data from more than 100
stand-alone data centers. Quandl††, another search engine
for numerical data, focuses on financial, economic, and so-
cial datasets and currently indexes more than eight million
pieces of data.

Several repositories are consisted by datasets with rich
text information and another has different tendency. Table
1 shows information existence ratio of Pangaea. Only about
1.7% of datasets have abstract but 73.2% of datasets have
both space and time information. Here, we define the exis-
tence ratio of each information type. For example, the exis-
tence ratio for abstract, space, and time are denoted as Ra, Rs,
and Rt and calculated as shown in Table 1.

2.2 Pseudo Relevance Feedback Dataset search
systems of conventional scientific dataset portal are mainly
based on text-based retrieval using metadata of datasets.
However, exact match of text information is not enough for
dataset search. For example, when we search “global warm-
ing” in WDS which is one of the data portal for earth science,
the number of result is only 130. There must be more datasets
conceptually related to global warming, but they do not ex-
actly match “global warming”. Such kind of problems are

† http://www.icsu-wds.org/services/data-portal
†† http://www.quandl.com/

Table 1. Information existence ratio in the metadata of
scientific datasets in Pangaea. All datasets were harvested
on January 23, 2014.

datasets num. of datasets ratio
overall 405,456

w/ abstract 7,028 Ra = 0.017
w/ time info. 297,478 Rt = 0.733

w/ space info. 404,145 Rs = 0.996
w/ space and time info. 297,037 Rst = 0.732

caused by the difference between index (made from metadata
of datasets) and query (given by user intension.)

To find more related datasets, relevance feedback (7) is used
in information retrieval. The notion of relevance feedback
is an iterative process, where users first specify which docu-
ments are relevant for them. These specified documents are
used by the system to retrieve more or similar documents.
From the newly retrieved documents, the users once again
specify relevant documents to produce a new query. The pro-
cess is then repeated. When the user’s interactions are re-
moved from this iterative process, this kind of relevance feed-
back is called Pseudo Relevance Feedback (PRF) or blind rel-
evance feedback (8), (9). The idea is to perform a normal search
and assume than the top k ranked documents are relevant.
Then, using this information, query expansion is performed
to retrieve more similar candidate documents.

Different variations of PRF have been explored and ap-
plied to specific problems. In Lioma’s work (10), queries are
expanded using the semantic annotations found in collabora-
tive tagging systems. In the context of microblog retrieval,
Chen (11) and Whiting (12) introduced a dynamic PRF that ex-
tracts representative terms based on the query’s temporal pro-
file. They show that exploiting temporal evidence for mi-
croblogs is effective. In Yin’s work (13), spatial relationships
are used instead of iconic image retrieval. A specific data
structure that allows region-based feedback improves the sys-
tem’s efficacy.

3. The Task: Searching Scientific Dataset

Although aforementioned search engines are widely used,
millions of datasets are searched through an engine that re-
trieves and ranks them using a simple keyword-based match-
ing algorithm and by aggregating the results. One draw-
back with such approaches is that the accuracy of the re-
sults is largely dependent on the ability of the users to formu-
late queries by appropriate keywords. Several frameworks to
manage scientific datasets with spatio-temporal information
have been proposed (14), (15).

There are several well-known techniques to improve the
accuracy of the search results such as interactive query re-
finement (16), information filtering (17), word sense disambigua-
tion (18), search results clustering (19). In the particular context
of scientific dataset discovery, most currently available search
engines use some variation of query expansion/text mining,
clustering, or semantics (8), (20), (21). Another trend in dataset
search crawls the hidden web and efficiently indexes meta-
data that provide the basic building blocks for sifting through
this vast space (22), (23), (24).

In this paper, we apply PRF to large-scale open scientific
data search system. For the scientific data retrieval, to use the

2 IEEJ Trans. XX, Vol.131, No.1, 2011



Spatio-Temporal Pseudo Relevance Feedback for Scientific Data Retrieval (Shin’ichi Takeuchi et al.)

Search Engine

Text Query

Datasets
Datasets

Text Query

Time Query

Space Query

STT Query

STT Query

Datasets

Datasets

Text Query

Query Search

Space Query

Constructor

Time Query

Constructor

Text Query

Constructor

STT Query

Constructor

Query Search

Space Score

Calculator

Time Score

Calculator

Text Score

Calculator

STT Score

Calculator

Dataset
Index

Figure 2. The architecture of STT-PRF. Conventional
PRF only uses a Text Query Constructor for additional
text query. In contrast, STT-PRF additionally possesses a
Time Query Constructor and a Space Query Constructor
for additional time and space query.

metadata of the dataset is more important. Text information,
one of the metadata of datasets, is important information to
search datasets. Also, when a phenomenon is observed at
some time and some place, the phenomena observed nearby
the place and time are considered as related. We apply this in-
tuitive approach to conventional PRF. To find the datasets re-
lated to such concept, not only their text information but also
space/time information affects the relevance of dataset. Actu-
ally, the importance of spatio-temporal data mining is grow-
ing in many domains such as climatology, marine ecosystem,
traffic control and so on (25).

4. Proposed Method

This section describes in detail our proposed method,
named Spatio-Temporal and Text Pseudo Relevance Feed-
back (STT-PRF). STT-PRF is based on PRF but its particu-
larity is that it not only uses text information but also spatio-
temporal information.

4.1 PRF using Spatio-Temporal Information Figure
2 shows STT-PRF’s architecture. First, with the system in-
put layer, the user inputs a search keyword in the form of a
text string. With the Query Search component, a standard
text-based search algorithm is applied using the text infor-
mation included in each dataset’s metadata. The retrieved
datasets are then ranked by their text scores φk calculated by
the Text Score Calculator. In this paper, φk is given by the
cosine distance between the TF-IDF based feature parame-
ter from the keyword and a dataset’s text information. Using
the cosine distance is one of the most standard techniques
to represent the similarity between two documents. How-
ever, we stress that STT-PRF’s comparative results are inde-
pendent from those choices. Since we are working toward a
more domain-optimized method, we will eventually replace
the current distance measures by more adequate techniques.

Query generation is the subsequent step. In a standard PRF,
the algorithm treats the top L datasets in the initial rank-
ing, referred to as YL, as relevant datasets. Then the Text

Query Constructer component makes additional text queries
from the text information. In STT-PRF, however, the query
is not solely composed of text information but also of space
and time information. The beginning and end dates of each
dataset in YL form time queries by the Time Query Construc-
tor component. Similarly, their spatial coverage is comprised
of space queries that are built by the Space Query Construc-
tor component. The set of the text, time and space queries is
treated as an expanded query and is used by the second Query
Search component.

With the second Query Search component, the space and
time scores are calculated for each dataset by the Space Score
Calculator and Time Score Calculator. They compute space
score φs and time score φt for dataset y using the following
equations:

φs(y) = exp{−(min
y′∈YL

ds(y, y′))2}, (1)

φt(y) = exp{−(min
y′∈YL

dt(y, y′))2}. (2)

Here, y′ shows the dataset in YL, which is the set of datasets
treated as relevant ones. ds and dt stand for the space and time
distances between the two datasets, respectively, as described
in Section 4.2.

The space, time and text scores of all the indexed datasets
are calculated, and the total score of dataset y, written φ(y),
is given by:

φ(y) = wsφs(y) + wtφt(y) + φk(y). (3)

where ws and wt are the weight parameters for each distance.
After the score calculation, the indexed datasets are ranked
based on their total scores and the second Query Search step
outputs the ranked datasets.

Note that we use keywords (text information) as a input
query which is the standard interface of search system. STT-
PRF can be applied with other (spatial or temporal) input
query.

4.2 Distance between Datasets Although PRF uses
text information for the second Query Search step, STT-PRF
additionally uses space and time information and calculates
the distance between two datasets to obtain the space and
time scores. There are several definitions of spatial/temporal
distance (or similarity) (26). As a previous research, the authors
investigated the effectiveness of the STT-PRF with different
definition of datasets and limited test sets (27). In this paper,
these distances are used in Eqs.(1) and (2). In this section,
we describe these distances in detail using the information
based on a metadata of datasets.

4.2.1 Spatial/Temporal Information in Metadata A
dataset’s space and time information are present in its meta-
data and are defined as one or two dimensional range. Such
information is specified under the form of beginning point xb
and end point xe within a time or a spatial series.

For the temporal information, the beginning and end times
become the beginning and end points of a time series. For
example, the beginning and end points of a dataset that
starts at year 1990 and ends at year 2000 has (xb, xe) set as
(1990, 2000).
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For the space information, the north/south points corre-
spond to the beginning/end points in the latitude series, and
the west/east points indicate the beginning/end points of the
longitude series.

4.2.2 Distance Definition based on Bhattacharyya
Distance Here, we explain the definition of space and
time distances among datasets based on the Bhattacharyya
distance (28). The Bhattacharyya distance is one of the stan-
dard definition to measure the distance between two proba-
bility distributions and defined as follows:

dB(p, q) = − ln
(∫ √

p(x)q(x)dx
)
. (4)

Here, p and q are some probability distribution. But as men-
tioned in previous section, the spatial/temporal information
is given as one or two dimensional range. Therefore, we ap-
proximate these information using the normal distribution to
apply Bhattacharyya distance for the distance of datasets.

For the approximation of datasets by the normal distribu-
tion, the uniform distribution is considered as the first step.
The uniform distribution is simply given by beginning point
xb and end point xe of spatial/temporal information. The ad-
vantage of this consideration is that the mean µ and variance
Σ of the distribution is defined as follows:

µ =
1
2

(xe + xb), Σ =
1

12
(xe − xb)2. (5)

After that, we can consider a normal distribution which has
same mean and variance given by Eq.(5) as an approxima-
tion of spatial/temporal information of a dataset. The dis-
tance between datasets is defined as the Bhattacharyya dis-
tance between normal distributions whose approximate target
datasets. Especially, the Bhattacharyya distance for normal
distributions are further transformed as follows:

d(yi, y j) =
1
8

(µi − µ j)
>

[
1
2

(Σi + Σ j)
]−1

(µi − µ j)

+
1
2

ln

 det( 1
2 (Σi + Σ j))√

det(Σi) det(Σ j)

 . (6)

5. Experiments

5.1 Experimental Setup The performance of key-
word based search is largely dependent on the ability of
users to formulated good queries. Therefore the performance
should be evaluated with commonly used queries. At this
point, we use keywords from actual query lists which is ob-
tained from the famous search engines. For the performance
evaluation of STT-PRF, 50 scientific keywords are chosen
from major search engines. The keywords were chosen
from actual science related keywords obtained from Google
Trends † and the query logs of the Cross-DB search system.
Additional keywords were chosen from environmental sci-
ence fields using Microsoft Academic Search †† for the cur-
rent trends in searched for terms. More keywords were cho-
sen from ontological concepts and were created using the

† http://www.google.com/trends/
†† http://academic.research.microsoft.com/

Table 2. Keywords for evaluation experiments chosen
from queries of major search engines and additional
sources.

high temperature atmospheric circulation air quality
marine biology climate variability boundary current

sediment interannual variability global climate
water cycle sea level pressure natural gas

sedimentary rock sea surface temperature ocean circulation
climate change water quality ocean current

southern oscillation carbon cycle precipitation
ice sheet particulate matter black carbon
acid rain coastal waters loop current
aerosol ozone tsunami
desert heavy metal hurricane

global warming environmental impact trade wind
greenhouse gas water pollution ozone hole

pollution soil pH ash flow
air pollution acid deposition tidal wave

glacier boreal forest typhoon
deforestation species richness

SWEET ontology, which mainly covers the earth and envi-
ronmental science terms. These keywords were selected from
natural science domains. Table 2 presents examples of the
keywords.

For these experiments, we took datasets from Pangaea by
searching with keywords shown in Table 1. All of keywords
brought more than 120 dataset as a search results so that we
used top 120 datasets of them. Keyword based search results
may contain noise datasets (not so keyword-related datasets.)
Therefore we used top 100 and additional 20 datasets to get
more keyword-related datasets in lower rank. The relevance
of all the retrieved datasets was manually evaluated by three
human labelers with master’s degrees in natural science. The
relevance of the retrieved datasets according to the queries
were evaluated on a scale from 0 to 3. A dataset with a rele-
vance value of 3 is completely related to the target query. A
relevance value of 0 means that it is completely unrelated to
the query. In the following experiments, datasets with rele-
vance values of 2 or 3 were considered query-related †††.

Weight parameters ws and wt in Eq.(3) were set to 0.370
and 0.074. These weights are set to optimal values based on
preliminary experiments. The top ten datasets in the initial
ranking were also used as relevant datasets (L = 10). For our
experiments, since the amount of available data was limited,
we empirically determined the values of weight parameters
wi in Eq.(3).

It is important to investigate the performance of STT-PRF
under various conditions. One of the important condition of
search target repository is Ra because it influences the 1st
search step of STT-PRF. Therefore, we evaluate the perfor-
mance of STT-PRF with test datasets changing Ra. The aim
is to evaluate the robustness of the methods against the lack
of the text information. As shown in Table 1, the Ra of origi-
nal Pangaea is about 0.017. In the experiments, the Ra had the
following values: 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, and 1.00.
Note that Ra is small for actual scientific data. For example,
Ra = 0.017 for datasets in Pangaea as described in Table 1. In
other words, the results from large Ra are not so important.
Considering the actual use case, we examined mainly small
Ra. The result with Ra = 1.0 is examined to grasp the whole

††† http://www2.nict.go.jp/univ-com/isp/s.takeuchi/sttprf.tgz
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Table 3. Comparison of performance of various meth-
ods with different Ra. The combination of Normal dis-
tribution and Bhattacharyya distance outperforms other
combinations in most of conditions.

Ra Distribution Distance ave. #hit P@30 R@30
Normal Bhattacharyya 87.7 0.328 0.219
Normal L2 88.4 0.321 0.206

0.01
Uniform Bhattacharyya 88.3 0.315 0.201
Uniform L2 88.1 0.324 0.207
Normal Bhattacharyya 95.7 0.332 0.261
Normal L2 96.3 0.324 0.248

0.05
Uniform Bhattacharyya 96.3 0.322 0.246
Uniform L2 96.1 0.322 0.236
Normal Bhattacharyya 102.5 0.356 0.328
Normal L2 106.6 0.346 0.306

0.20
Uniform Bhattacharyya 106.6 0.343 0.293
Uniform L2 104.8 0.344 0.293

tendency of the effectiveness of the proposed method.
Although the main effectiveness of PRF is to improve re-

call performance, we use the following performance eval-
uation criteria: Precision at 30 (P@30) and Recall at 30
(R@30). The Precision of the top n datasets P@n and the
recall of the top n datasets R@n are defined as:

P@n =
tp@n

tp@n + f p@n
, R@n =

tp@n
tp@n + f n@ALL

,

(7)

respectively, where tp@n is the number of true positives and
f p@n is the number of false positives in the top n datasets. In
our experiments, since the number of query-related datasets
is known as N, the false negatives can be calculated. We de-
note f n@ALL as the false negatives from all of the datasets.

In general, web page search methods are mainly evaluated
by using top 10 results of them because the user often check
and obtain the information from only the first pages. They
do not need so many matched pages because they have only
to find the first appropriate one. On the other hand, search-
ing scientific datasets has different tendency. Although the
most relevant dataset is required, other related datasets are
also useful to compare or support the first one. At this point,
we evaluate top 30 results based on the assumption of that
each result page shows 10 results and user checks three result
pages.

As described in Section 4, we use the combination of Bhat-
tacharyya distance and normal distribution for the definition
of distance between datasets. To show the validity of pro-
posed method, we also use other definitions.

For the comparison of distance measure, we use L2 dis-
tance given by Eq.(8)

dL2 (p, q) =

∫
(p(x) − q(x))2dx. (8)

Also, the uniform distribution is used as the comparison of
distribution definition.

5.2 Performance Evaluation Table 3 shows the av-
erage number of hit datasets (ave. #hit) and the performance
measures for different Ra and the combination of the distri-
bution and distance to represent spatio-temporal information
of a dataset. This result reveals that the combination of the
normal distribution and Bhattacharyya distance outperforms

Table 4. Performance comparison among various meth-
ods using different Ra. The value of Ra of Pangaea is
about 0.017.

Ra Method ave. #hit P@30 R@30
baseline 14.6 0.366 0.090
S-PRF 19.7 0.332 0.109

0.01 T-PRF 20.6 0.358 0.115
PRF 87.4 0.329 0.202

STT-PRF 87.7 0.328 0.219
baseline 15.0 0.388 0.095
S-PRF 21.4 0.357 0.126

0.02 T-PRF 21.3 0.370 0.123
PRF 91.5 0.332 0.221

STT-PRF 91.6 0.332 0.238
baseline 16.7 0.395 0.115
S-PRF 26.3 0.360 0.180

0.05 T-PRF 24.5 0.372 0.152
PRF 95.5 0.331 0.240

STT-PRF 95.7 0.332 0.261
baseline 19.1 0.434 0.136
S-PRF 30.4 0.399 0.196

0.10 T-PRF 27.7 0.422 0.179
PRF 101.4 0.349 0.260

STT-PRF 101.8 0.336 0.278
baseline 24.0 0.464 0.208
S-PRF 36.1 0.427 0.259

0.20 T-PRF 33.1 0.451 0.244
PRF 102.0 0.359 0.311

STT-PRF 102.5 0.356 0.328
baseline 38.6 0.497 0.336
S-PRF 49.2 0.462 0.354

0.50 T-PRF 49.0 0.465 0.345
PRF 107.7 0.391 0.388

STT-PRF 108.0 0.395 0.398
baseline 62.9 0.525 0.433
S-PRF 68.7 0.467 0.407

1.00 T-PRF 71.4 0.469 0.428
PRF 113.3 0.402 0.417

STT-PRF 113.3 0.398 0.417

other combinations almost outperforms in P@30 and R@30.
Table 4 shows the same criteria for STT-PRF given by the

combination of the normal distribution and Bhattacharyya
distance. In this experiments we used a keyword-based
search without any PRF as a baseline method. However it
is possible to apply other search result improvement methods
described in Section 3, this paper focuses on the efficiency
of using spatio-temporal information for PRF. At this point,
we used PRF using spatial information, PRF using temporal
information, and conventional PRF (PRF using text informa-
tion) as comparison methods. In Table 4, those methods are
denoted by S-PRF, T-PRF, and PRF respectively.

The results reveal that STT-PRF outperforms R@30 and
the number of hit datasets with most of abstract existence ra-
tio. STT-PRF can bring in additional datasets that cannot be
found by text-based search only methods. Although not all of
the PRF methods show improvement of Precision, their main
focus is not quality but the amount of search results.

More specifically, due to the experiment design, the PRF
result is close to the STT-PRF result. All of the test sets were
corrected based on the text search result, and the datasets
are highly correlated not by spatial/temporal information but
by text information. However, STT-PRF outperforms other
methods, and this result shows the effectiveness of using spa-
tial/temporal information as additional queries.
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(a) Initial search results (b) search results with STT query generated by STT-PRF

Figure 3. (a) Locations of datasets found by initial query search with keyword “sediment”. Green and pink
circles represent the center of the relevant and irrelevant datasets respectively. (b) Locations of datasets found by
STT query generated by STT-PRF. We can obtain additional relevant datasets.

6. Discussion

6.1 Example Of STT Query As an example of the
effectiveness of spatial query, Figure 3 shows the spatial dis-
tributions of the datasets given by a search query for “sedi-
ment” with Ra = 0.02. In both figures, datasets with rele-
vance of 0 or 1 (irrelevant) and 2 or 3 (relevant) are plotted
with pink and green circles respectively. In the first step of
STT-PRF, we did a text-based search and found 63 datasets.
Figure 3 (a) shows the locations of the 59 relevant and the
four irrelevant datasets. STT-PRF performs spatio-temporal
queries starting from those locations and searches for addi-
tional datasets near those datasets. For example, the datasets
near the spatial queries take higher spatial score φs. Figure
3 (b) shows the search result after STT-PRF. The number of
relevant and irrelevant datasets increases to 109 and 6 respec-
tively.

6.2 Cross-DB Search System Finding relationship
from datasets from different domain, such as co-location pat-
tern mining (30) has been investigated. We previously ap-
plied our proposed method to the Cross-DB Search System (29)

whose specificities are: 1) it is especially oriented to discover
datasets, facilitating data access and usability, 2) it provides
high quality-ensured data and information, especially for sci-
entists since it can find related and correlated datasets by in-
tegrating them using spatio-temporal relationships and infor-
mation from citations and ontologies. The spatio-temporal
associations are calculated from the observed data, and the
ontological associations are based on the relationships be-
tween concepts on a given ontology where the datasets are
represented; the citational associations leverage the use and
the re-use of datasets by acting as a bridge between scientific
domains.

Figure 4 shows (a) initial search results and (b) the results
after STT-PRF of Cross-DB Search System for the keyword
“precipitation”. In Figure 4 (a), datasets which actually have
the keyword “precipitation” are found. Several datasets in
the top of this rank is considered as a query-related datasets
and used for STT-PRF. In Figure 4 (b), additional datasets
are found by using the STT information of query-related

datasets. The number of datasets increases more than 40
times by using STT-PRF.

6.3 Optimizations Equation (3) is a linear combina-
tion, which is a standard method that combines several scores
to determine the total relevance/score (31), (32). However, in our
paper we intentionally adopted a linear function for combin-
ing the scores. Although Eq.(3) currently only consists of
weight parameters, we are planning to model it as an adaptive
model that will preliminary training by using the Minimum
Classification Error (MCE) (33) technique to determine the op-
timal parameters that minimize the empirical error rate. To
approximate the scale of the maximum margin, we believe
that a linear combination is acceptable, as shown in Eq.(3).

An alternative measurement of the distance among datasets
such as KL divergence, Hellinger distance, etc. can be ap-
plied chosen by considering the target domain’s specifica-
tions. The spatio-temporal information of the datasets was
given by their own metadata that only contain boundary in-
formation. It is possible to use more precise representation
when we use all of the spatio-temporal information in the
raw data.

6.4 Expansion of Performance Evaluation Condition
To the best of knowledge, no standard test sets exist for eval-
uating scientific dataset search systems, so we created our
own original test set specifically for conducting the experi-
ments described in Section 5.

Several standard evaluation test sets exist for search en-
gines, but the difference and our motivation for creating orig-
inal test sets is that the specific knowledge of a particular
scientific domain is required. With that knowledge, we can
assess whether a dataset is relevant to a specific query.

For our experiments, specialists created several test sets us-
ing different keywords. Therefore, the amount of test sets was
constrained by financial constraints in terms of the number of
specialists and time. More test sets are being created for this
research work.

7. Conclusion

In this paper, we proposed a novel query generation
method called STT-PRF that exploits spatio-temporal infor-
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(a) Initial search results (b) search results with STT query generated by STT-PRF

Figure 4. (a) Initial search results for the keyword “precipitation” by Cross-DB Search System. The datasets
which actually have the keyword “precipitation” are found. Several datasets in the top of this rank is considered
as a query-related datasets and used for STT-PRF. (b) Search results after STT-PRF. Additional datasets are found
by using the STT information of query-related datasets. The number of datasets increases more than 40 times by
using STT-PRF.

mation for data search. It uses text information as well
as space and time information in order to expand the ini-
tial query based on a pseudo relevance feedback approach.
In STT-PRF, the distance between two datasets was defined
based on their spatio-temporal information. By defining the
distance many similar applications can be used (e.g., cluster-
ing, recommendation.) Our experimental results demonstrate
that STT-PRF can find datasets that do not have sufficient text
information for applying standard text-based PRF. We also
show that the retrieved datasets are highly relevant to input
queries.

Future work will test STT-PRF on other scientific domains.
Pangaea specializes in environmental science datasets, and
we know that other domains have different spatio-temporal
needs. In addition, we only focus as metadata for spatial in-
formation but all the locations in a datasets are potentially
useful. For example, computing the similarity of raw data of
datasets have been investigated (34) and it can be applied as a
distance measurement of datasets. At this point, we will in-
vestigate on the probabilistic representation of such location.
Also, adding other types of correlations such as ontological
correlation, citational correlation, etc. will be used to extend
PRF. We also focus on the optimization of the weight param-
eters for spatial/temporal/text scores in Eq. 3 as described in
Section 6.3.
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