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Abstract

In an object manipulation dialogue, a robot may misunder-
stand an ambiguous command from a user, such as “Place
the cup down (on the table), ” potentially resulting in an acci-
dent. Although making confirmation questions before all mo-
tion execution will decrease the risk of this failure, the user
will find it more convenient if confirmation questions are not
made under trivial situations. This paper proposes a method
for estimating ambiguity in commands by introducing an ac-
tive learning framework with Bayesian logistic regression to
human-robot spoken dialogue. We conducted physical exper-
iments in which a user and a manipulator-based robot com-
municated using spoken language to manipulate objects.

1 Introduction

For practical reasons, most dialogue management mecha-
nisms adopted for service robots process verbal (user’s ut-
terances) and nonverbal (e.g., vision, motion and context)
information separately. With these mechanisms, neither the
situation nor previous experiences are taken into account
when a robot processes an utterance, so there is a possibil-
ity that it will execute motions that the user had not imag-
ined. In this study, we define “motion failure” as occurring
when a robot has executed an undesirable motion because of
a recognition error.

The goal of this study is to decrease the risk of motion fail-
ure. A simple solution to decrease the risk of motion failure
is to make confirmation utterances before motion execution,
such as “You said ‘Bring me the cup.’ Is this correct?” How-
ever, there are two main hurdles to generating confirmation
utterances: whether to confirm and how to confirm.

The problem of whether to confirm is a decision-making
problem of whether a confirmation utterance should be made
or not. Although making confirmation utterances before all
motion executions would be simple and effective, this would
however seriously disrupt the dialogue. Specifically, the user
will find it more convenient if confirmation questions are not
made under trivial situations. In the field of spoken dialogue
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systems, the whether-to-confirm problem receives consider-
able attention in the context of error handling (Komatani and
Kawahara 2000, Bohus and Rudnicky 2005).

The problem of how to confirm is the problem of para-
phrasing user’s commands. The sentence “Bring me a cup”
is ambiguous when there are multiple cups, and asking
a confirmation question such as “Do you mean the blue
cup?” can disambiguate the sentence. Moreover, when di-
rect and/or indirect objects are omitted (object ellipsis) in the
user’s utterance, such as “Place the cup down (on the table),”
it would be preferable to generate an appropriate descrip-
tion of the objects. The how-to-confirm problem deals with
the mapping between language and physical/virtual objects,
and has been widely explored in Natural Language Gen-
eration (NLG) studies (e.g., Dale and Reiter 1995, Jordan
and Walker 2005, Funakoshi et al.2009) presents a model
for priming speech recognition using visual and contextual
information.

The robotics community has recently been paying greater
attention to the mapping between language and real-world
information, mainly focusing on motion (Kruger et al. 2007,
Sugita and Tani 2005, Inamura et al. 2004). (Ogata et
al. 2007) presents an application of recurrent neural net-
works to the problem of handling many-to-many relation-
ships between motion sequences and linguistic sequences.
In (Takano and Nakamura 2009), a linguistic model based
on the symbolization of motion patterns is proposed. More-
over, we have proposed a robot language acquisition frame-
work “LCore” that integrates multimodal information such
as speech, motion, and visual information(Iwahashi 2007).

In this study, we extend LCore with a scheme of dia-
logue management method based upon an adaptive confi-
dence measure. called the integrated confidence measure
(ICM) function. The proposed method has three key fea-
tures:

1. A user model corresponding to each modality is assumed
to be shared by the user and robot. This assumption en-
ables us to introduce an active learning framework into
human-robot dialogue. The user model is explained in
Section 3.

2. Active learning is used for selecting the optimal utter-
ances to generate, which effectively train the ICM func-
tion. The introduction of active learning is evaluated us-
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ing likelihood criteria in Section 5.

3. Bayesian logistic regression (BLR)(Genkin, Lewis, and
Madigan 2007) is used for learning the ICM function that
enables us to estimate the probability that the user’s utter-
ances will be successfully understood from multimodal
information.

2 Task Environment

Object Manipulation Dialogue Task

Figure 3 shows the task environment used in this study. A
user sits in front of a robot and commands the robot by
speech to manipulate objects on the table located between
the robot and the user. The robot is also able to command
the user by speech to manipulate the objects. The objects
used in the experiments are shown in Figure 2.

We assume that linguistic knowledge (e.g., phoneme se-
quence and, word sequence) and non-linguistic knowledge
(e.g., motion and, visual information) are learned by us-
ing LCore(Iwahashi 2007). This knowledge is not given by
the designer, but is learned through interaction with users.
Knowledge representation in LCore is explained in Section
3 in detail. The main functions given by the designer are
object extraction and calculation of visual features.

The task has three phases:

1. Robot command phase (learning phase (a))
The robot commands the user to manipulate objects. The
ICM function is trained using the proposed method.

2. User command phase (learning phase (b))
The user commands the robot to manipulate objects. The
ICM function is trained with initialization based on the
results of the robot command phase.

3. Motion execution phase
The user commands the robot to manipulate objects, how-
ever the ICM function is not updated. Motion and confir-
mation utterances are generated by the method proposed
in (Sugiura et al. 2009).

Figure 1 shows an example of the user command phase.
The figure depicts a camera image in which the robot is told
to place Object 1 (Barbabright) on Object 2 (red box). The
solid line shows the trajectory intended by the user. The
relative trajectory between the trajector (moved object) and
the reference object is modeled with a hidden Markov model
(HMM)(Sugiura and Iwahashi 2007). The reference object
can be the trajectory itself or a landmark characterizing the
trajectory of the trajector. In the case shown in Figure 1, the
trajector, reference object, and reference point are Object 1,
Object 2, and Object 2’s center of gravity, respectively.

Robotic Platform

Figure 3 shows the robot used in this study. The robot
consists of a manipulator with seven degrees of free-
dom (DOFs), a four-DOF multifingered grasper, a micro-
phone/speaker, a stereo vision camera, 3D time-of-flight
camera (SR-4000), and a gaze-expression unit. Teaching
signals can be provided by hitting a touch sensor on the
grasper.

Figure 1: An example of object manipulation dialogue
tasks.

Figure 2: Objects used in
experiments.

Figure 3: Robotic platform
used in the experiments.

The visual features and positions of objects were ex-
tracted from image streams obtained from the stereo vision
camera. The extraction and tracking of objects are done
based on their color. The visual features have six dimen-
sions: three for color (L*a*b* color space) and three for
shapes. The shape features, object area farea, squareness
fsq, and width-height ratio fwhr are defined as farea = wh
and fsq = Nobj/wh, where h,w and Nobj denotes the ob-
ject’s height, width, and number of pixels, respectively. For
motion learning/recognition, the trajectories of objects’ cen-
ters of gravity are used.

3 The LCore Framework

LCore Overview

The LCore(Iwahashi 2007) selects the optimal action based
on an integrated user model trained by multimodal informa-
tion when a user’s utterance is input. A user model corre-
sponding to each modality (speech, vision, etc.) is called
a belief module. The user model integrating the five belief
modules – (1) speech, (2) motion, (3) vision, (4) motion-
object relationship, and (5) behavioral context– is called the
shared belief Ψ.

Utterance Understanding in LCore

An utterance s is interpreted as a conceptual structure z =
(WT ,WL,WM), where WT , WL, and WM represent the phrases
describing the trajector, landmark, and motion, respectively.
For motion concepts that do not require a landmark object,
z = (WT ,WM). For example, the user’s utterance, “Place-on
Barbabright red box,” is interpreted as follows:
WT : [Barbabright ], WL : [red , box ], WM : [place-on ]
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The LCore does not deal with function words such as prepo-
sitions and articles, i.e. the user is not supposed to use words
such as “on” and “the.”

Suppose that an utterance s is given under a scene O. O
represents the visual features and positions of all objects in
the scene. The set of possible actions A under O is defined
as follows:
A = {(it , ir,C〈 j〉

V ) | it = 1, ...,ON , ir = 1, ...,RN , j = 1, ...,VN}
� {ak | k = 1,2, ..., |A|}, (1)

where it denotes the index of a trajector, ir denotes the index
of a reference object, ON denotes the number of objects in
O, RN denotes the number of possible reference objects for
the verb C〈 j〉

V , and VN denotes the total number of CV in the
lexicon.

Each belief module is defined as follows: First, the belief
module of speech, BS, is represented as the log probability
of s conditioned by z. Here, word/phrase orders is learned by
using bigrams/trigrams. Next, the belief module of motion,
BM , is defined as the log likelihood of a probabilistic model
given the maximum likelihood trajectory Ŷk for ak. The be-
lief module of vision, BI , is represented as the log likelihood
of WT given Object i’s visual features x

〈i〉
I , where Object i is

either the trajector it or the landmark ir. Similar to BI , the be-
lief module of motion-object relationship, BR, is represented
as the log likelihood of a probabilistic model given the visual
features of Objects it and ir. The belief module of behavioral
context, BH(i,q〈i〉), represents the adequateness of Object i
as the referent under the context q〈i〉 = (q〈i〉1 ,q〈i〉2 ), where q〈i〉1

and q〈i〉2 stand for truth values representing the statements
“Object i is being grasped” and “Object i was manipulated
most recently”, respectively. The details of the definitions of
above modules are presented in (Iwahashi 2007).

The shared belief function Ψ is defined as the weighted
sum of each belief module:

Ψ(s,ak,O,q〈it 〉) =

max
z

{
γ1 logP(s|z)P(z;G) [BS]

+γ2

(
logP(x〈it 〉I |WT )+ logP(x〈ir〉I |WL)

)
[BI]

+γ3 logP(Ŷk|x〈it 〉p ,x
〈ir〉
p ,C〈 j〉

V ) [BM]

+γ4 logP(x〈it 〉I ,x
〈ir〉
I |C〈 j〉

V ) [BR]

+γ5

(
BH(it ,q〈it 〉)+BH(ir,q〈ir〉)

)}
, [BH ]

(2)

where x
〈ir〉
p denotes the position of Object i, and γ =

(γ1, ...,γ5) denotes the weights of the belief modules. The
MCE learning(Katagiri, Juang, and Lee 1998) is used for
the learning of γ.

Inappropriate speech recognition results are re-ranked
lower by using Ψ. There are several methods for re-ranking
an utterance hypothesis (e.g. (Lemon and Konstas 2009)). In
contrast, information on physical properties such as vision
and motion is used in Ψ, since object manipulation requires
physical interaction.

Figure 4: Schematic of the proposed method.

4 Active Learning of the Integrated

Confidence Measure Function

The schematic of the proposed method is illustrated in Fig-
ure 4. Each function in the figure is explained below.

Modeling Confidence for Utterance Understanding

The proposed method quantifies ambiguities in a user’s ut-
terances. In this subsection, we first explain the ambiguity
criterion used in this study.

Given a context q, a scene O, and an utterance s, the op-
timal action âk is obtained by maximizing the shared belief
function.

âk = argmax
ak∈A

Ψ(s,ak,O,q) (3)

We define the margin function d for the action ak ∈ A as the
difference in the Ψ values between ak and the action maxi-
mizing Ψ, a j ( j �= k) :

d(s,ak,O,q) = Ψ(s,ak,O,q)−max
j �=k

Ψ(s,a j,O,q) (4)

Let al be an action that gives the second maximum Ψ value.
When the margin for the optimal action âk is almost zero, the
shared belief values of âk and al is nearly equal; this means
that the utterance s is a likely expression for both âk and al .
In contrast, a large margin means that s is an unambiguous
expression for âk. Therefore, the margin function can be
used as a measure of the utterance’s ambiguity.

Now we define the integrated confidence measure (ICM)
function by using a sigmoid function, as follows:

f (d;w) =
1

1+ exp−(w1d+w0) , (5)

where d is the value of the margin function for an action,
and w = (w0,w1) is the parameter vector. The ICM function
is used for modeling the probability of success.

We now consider the problem of estimating the parame-
ters w of the ICM function based on logistic regression. The
ith training sample is given as a pair consisting of the margin
di and teaching signal ui. Thus, the training set T

〈N〉 contains
N samples:

T
〈N〉 = {(di,ui)|i = 1, ...,N}, (6)

where ui is 0 (failure) or 1 (success).
BLR(Genkin, Lewis, and Madigan 2007) is used for ob-

taining the MAP estimate of w. A univariate Gaussian prior
with mean mi and variance τi (i = 0,1) on each parameter
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wi is used.

P(wi|τi) = N (mi,τi) =
1√
2πτi

exp
−w2

i
2τi

(7)

Utterance Selection as Active Learning

The utterance candidate generator (see Figure 4) generates
all possible linguistic expressions for each action ak and
calculate their margin. The set of margin is input to the
scoring function based on Expected Log Loss Reduction
(ELLR)(Roy and McCallum 2001) and Bayesian logistic re-
gression (BLR)(Genkin, Lewis, and Madigan 2007). Next,
the optimal margin linked with an utterance is selected and
the utterance is output as a speech command to the user.
The true/false judgment module recognizes the motion per-
formed by the user, and judges the result as 0(false) or
1(true). The result is input to the training set and used by
the scoring function.

Basically, a training sample for learning the ICM function
is obtained when a robot has executed a motion. Note that
we assume that belief modules and Ψ are shared by the user
and the robot to introduce active learning. Based on this
assumption, we can train the ICM function by using training
data obtained when the robot commands the user by speech
to manipulate an object.

The proposed method selects the utterance that is most
effective for learning the function based on Expected Log
Loss Reduction (ELLR)(Roy and McCallum 2001). Among
many criteria, uncertainty sampling(Lewis and Gale 1994)
is the most basic method in active learning, however it se-
lects a sample with the most entropic prediction. In contrast,
ELLR asks for labels on examples that, once incorporated
into training, will result in the lowest expected error on the
test set(Roy and McCallum 2001).

Now, let f̂ 〈N〉(d) denote the ICM function trained by the
data set T

〈N〉. The log loss L(T〈N〉) is defined as follows:

L(T〈N〉) =
N

∑
i=1

{
f̂ 〈N〉(di) log f̂ 〈N〉(di)+(1− f̂ 〈N〉(di)) log(1− f̂ 〈N〉(di))

}

In this case, L(T〈N〉) can be regarded as the sum of entropy.
Let V = {v j| j = 1, ..., |V |} denote the utterance candi-

dates in the scene O, and e j denote the margin linked with
v j. Here, V means the possible combinations of a word se-
quence that consists of learned words. We make V a finite set
by limiting the length of a sequence. The proposed method
selects the utterance that minimizes the Expected Log Loss
E(T〈N〉,e j). E(T〈N〉,e j) is defined as follows:

E(T〈N〉,e j) = f̂ 〈N〉(e j)L(T〈N+1〉
+ )+(1− f̂ 〈N〉(e j))L(T〈N+1〉

− ),

T
〈N+1〉
+ � T

〈N〉 ∪ (e j,1), T
〈N+1〉
− � T

〈N〉 ∪ (e j,0) (8)
Thus, Equation (8) takes into account the effect of a not-yet-
obtained sample. In ELLR, f̂ 〈N+1〉(e j) is trained in advance
of obtaining the (N + 1)th sample. On the other hand, un-
certainty sampling(Lewis and Gale 1994) does not take into
account the effect of selecting the (N +1)th sample.

5 Experiments

Experimental Setup

To evaluate the proposed method, we conducted two kinds of
experiments: (1) active learning of the ICM function, and (2)
evaluation of the proposed method. The objective of Exper-
iment (1) is to investigate the number of samples necessary
for convergence of the learning. Experiment (2) was aimed
at evaluating the effectiveness of using the result of Experi-
ment (1) as the prior distribution. Although the effectiveness
is unclear since the assumption that the user and robot share
the ICM function is not always true, we will clarify the ad-
vantages of the proposed method.

In Experiment (1), the robot commanded the user by
speech to manipulate objects based on the proposed method.
This flow which starts from the robot’s utterance and ends
with the user’s manipulation is called an episode. The max-
imum number of episodes was set to 30. The prior distribu-
tion of the parameter wi was defined as a univariate Gaussian
distribution. The parameters of the prior, or hyperparame-
ters, were set as (m0,m1,τ0,τ1) = (0,1,100,100). The hy-
perparameters (m0,m1) were set as (m0,m1) = (0,1) so as
to make the initial ICM function be the standard logistic sig-
moid function. The maximum length of (WT ,WL,WM) were
set to (3,3,1), respectively.

In Experiment (2), we obtained the training and test data
as follows. First, the subject was instructed to command
the robot in the same environment as Experiment (1). This
enabled us to obtain 60 pairs of camera image and speech,
which we labeled with the indices of {motion, trajector,
landmark}. Half of the data was used as a training set and
the other half was used as a test set.

We compared the case in which the parameter estimated
in Experiment (1) was used as the prior distribution with
a case involving a “standard” prior distribution without pa-
rameter tuning. The parameters of the standard prior were
set as (m0,m1,τ0,τ1) = (0,1,100,100). To evaluate these
methods, we compared test-set likelihood, where ten differ-
ent combinations of a training and test set were used. Similar
to Experiment (1), we use the word “episode” to represent
the flow that begins from the user’s utterance and ends with
the robot’s manipulation.

In Experiment (2), the number of motion failures was also
compared. We compared the average number of motion fail-
ures occurring from the first to the icth episodes, where ic
represents the episode in which a convergence condition re-
garding log likelihood L was met. The convergence condi-
tion is set as L < −20, based on the results of the experi-
ment in (Sugiura et al. 2009). Although we continued the
actual experiment after the convergence condition was met,
the learning should be terminated here for efficiency.

The lexicon used in the experiments contained 23 words
(8 nouns, 8 adjectives, and 7 verbs). The user taught the
names or properties of objects in Japanese1 by showing the
objects to the robot. Unsupervised learning was used for
obtaining the phoneme sequences of the words(Iwahashi
2007). Those words had been grounded to the physical prop-

1In this paper, the utterances are translated into English.
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[Situation: Object 1 was manipulated most recently]
R: Jump-over Pooh-doll Kermit.
U: (The user makes Object 3 jump over Object 2.)

Figure 5: Dialogue example in the learning phase. The cor-
rect action is to make Object 3 (Pooh-doll) jump over Object
2 (Kermit).

Figure 6: Margin selected by Equation (8). The dotted line
shows an episode in which motion failure by the user oc-
curred.

erties of objects and motions in the learning phase of the
lexicon (Iwahashi 2007, Sugiura and Iwahashi 2007).

Results (1): Active Learning of the ICM Function

First, we address the qualitative results. Figure 5 shows an
example dialogue between the subject (U) and the robot (R).
In this case, the number of possible combinations of objects
and motion were 45, which means that 45 pairs of a word
sequence and margin are generated by the utterance candi-
date generator shown in Figure 4. Among the pairs, the mar-
gin d = 13.4 is selected based on Equation (8). Here, the
utterance linked with the margin d = 13.4 was “Jump-over
Pooh-doll Kermit (Make the Pooh doll jump over Kermit.),”

In Figure 6, the selected margin is plotted against an
episode that represents the number of robot utterances. In
the figure, the dotted line shows the episode in which mo-
tion failure by the user has occurred. From the figure, we
can see that the larger margin is selected at the (i∗ + 1)th
episode compared with the i∗th episode, where i∗ represents
the episode in which such motion failure occurred. This
means that an utterance with less ambiguity is selected at
the (i∗ +1)th episode.

Results (2): Evaluation of the Proposed Method

Figure 7 shows examples of camera images input for the pro-
posed method. The inputs into the system were the visual

Figure 7: Training samples. Yellow frames represent the
most recently manipulated objects. Left: The input user
utterance was “Move-away Kermit,” and the correct output
was to move Object 86 away from Object 82. Right: The
input user utterance was “Place-on red box,” and the correct
output was to place Object 76 on Object 77.

Figure 8: Left: The test-set log likelihood of (1) the pro-
posed method and (2) a baseline. Right: Average number of
motion failures.

features of the extracted objects, context information (Ob-
ject X was manipulated most recently, etc), and user utter-
ances.

The left-hand figure of Figure 8 compares the average
test-set log likelihood of (1) the proposed method and (2)
the baseline which used a standard prior. The lines show the
average log likelihood, where ten different combinations of
a training and test set were used. The figure clearly indi-
cates that the proposed method outperformed the baseline in
the early episodes.

The right-hand figure of Figure 8 compares the average
number of motion failures occurring from the first to the icth
episodes. From the figure, we can see that the number of mo-
tion failure could be reduced by using the proposed method
if we terminated the learning at the icth episode. The reduc-
tion in the number of motion failures supports the validity of
the prior pre-trained by using active learning.

Additional Result in Motion Execution Phase

In this subsection, we show an additional qualitative result
in the motion execution phase. The experiment conditions
are explained in detail in (Sugiura et al. 2009). Figure 9
shows a dialogue example in which a user’s utterance is dis-
ambiguated by using grounded information.

In Figure 9, the ICM value of the optimal action â was
small. Therefore, the robot first asked whether “green box”
was the trajector. Here, the word “green” was used to de-
scribe the major difference between Object 2 (the green box)
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[Situation: Object 2 was manipulated most recently]
U: Move-closer box Elmo.
R: Move-closer green box?
U: No.
R: Move-closer blue box?
U: Yes.
R: (The robot moves Object 3 closer to Object 1.)

Figure 9: Dialogue example (2). Motion execution with a
confirmation utterance. The correct action is to move Object
3 (the blue box) closer to Object 1 (Elmo).

and Object 3 (the blue box). In the second confirmation ut-
terance, the word “blue” was inserted into the phrase WT ,
since this gave the maximum margin. In contrast, the land-
mark was not mentioned in either generated utterance since
no word insertion into WL had a significant influence on the
ICM values.

6 Conclusion

Safe interaction with users is a critically important re-
quirement for assistive robots supporting users in everyday
environments. In this paper, we proposed a method
that decreases the risk of motion failure in the learning
phase. One of the contributions of this study is the in-
troduction of active learning into a multimodal spoken
dialogue system. Some demo video clips can be found
at http://mastarpj.nict.go.jp/˜ksugiura/
video_gallery/video_gallery_en.html.
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