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Abstract
This paper proposes a method that generates motions and ut-
terances in an object manipulation dialogue task. The pro-
posed method integrates belief modules for speech, vision, and
motions into a probabilistic framework so that a user’s utter-
ances can be understood based on multimodal information. Re-
sponses to the utterances are optimized based on an integrated
confidence measure function for the integrated belief modules.
Bayesian logistic regression is used for the learning of the confi-
dence measure function. The experimental results revealed that
the proposed method reduced the failure rate from 12% down
to 2.6% while the rejection rate was less than 24%.
Index Terms: multimodal spoken dialogue system, robot lan-
guage acquisition, confidence, Bayesian logistic regression

1. Introduction
The needs of an aging society have raised the hope of robots
supporting humans in daily environments. For such assistive
robots, the functional capability of natural communication with
users is crucial. However, the state-of-the-art techniques have
safety concerns since a user’s utterances are processed with
non-grounded knowledge. Neither the situation nor previous
experiences are taken into account when a robot processes an
utterance, so there is a possibility that it will execute motions
that the user had not imagined.

The goal of this study is to decrease the risk. The target task
of this study is called an object manipulation dialogue task in
which a robot manipulates objects according to a user’s utter-
ances. An example of object manipulation dialogue tasks in a
home environment happens when a user tells a robot to “Put the
dish in the cupboard.” Solving this task is fundamental for assis-
tive robots, but it is difficult to program beforehand. This is be-
cause many candidate objects exist in the home and the desired
motion depends on elements specific to each home. Therefore,
in object manipulation dialogue tasks two kinds of disambigua-
tions are necessary: (1) the disambiguation of object reference
and (2) the disambiguation of motion reference.

Much work has been done to solve the disambiguation
problems (e.g. [1,2]), however no previous research has realized
the disambiguation of both (1) and (2). On the other hand, we
have proposed the LCore framework that enables robots to learn
the capability of linguistic communication from scratch [3].

In this study, we extend LCore with a scheme of dialogue
management method based upon an adaptive confidence mea-
sure. The proposed method called LCore-DEC, which gener-
ates motions and utterances in an object manipulation dialogue
task, is presented. LCore-DEC has two key features:

1. Bayesian logistic regression (BLR) is used for learning a
confidence measure of multimodal utterance understand-
ing so that we can estimate the utility of the robot’s re-
sponses.

2. The estimated utility is then used for decision-making on
the responses as motions or confirmation utterances, and
for generating confirmation utterances.

BLR presents several advantages over other methods (e.g. [4])
such as (1) predicting the probability of success as a posterior
probability density function, and (2) sample efficiency.

2. The LCore Method
The LCore method [3] selects the optimal action based on an
integrated user model trained by multimodal information when
a user’s utterance is input. A user model corresponding to each
modality (speech, vision, etc.) is called a belief module. The
user model integrating the five belief modules – (1) speech, (2)
motion, (3) vision, (4) motion-object relationship, and (5) be-
havioral context– is called the shared belief Ψ.

2.1. Object Manipulation Dialogue Task

Figure 1 shows an example of an object manipulation dialogue
task. The figure depicts a camera image in which the robot is
told to place Object 1 (Barbabright) on Object 2 (red box). The
solid line shows the trajectory intended by the user. The relative
trajectory between the trajector (moved object) and the refer-
ence object is modeled with a hidden Markov model(HMM) [5].
The reference object can be the trajector itself or a landmark
characterizing the trajectory of the trajector. In the case shown
in Figure 1, the trajector, reference object, and reference point
are Object 1, Object 2, and Object 2’s center of gravity, respec-
tively.

Figure 1: An example of object manipulation dialogue tasks.

2.2. Utterance Understanding in LCore

An utterance s is interpreted as a conceptual structure z =
(WT ,WL,WM), where WT , WL, and WM represent the segments
describing the trajector, landmark, and motion, respectively.
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For example, the user’s utterance, “Place-on Barbabright red
box,” is interpreted as follows:

WT : [Barbabright ], WL : [red , box ], WM : [place-on ]
The LCore method does not deal with function words such as
prepositions and articles, i.e. the user is not supposed to use
words such as “on” and “the”.

Suppose that an utterance s is given under a scene O. O
represents the visual features and positions of all objects in the
scene. The set of possible actions A under O is defined as fol-
lows:
A = {(it , ir,C

〈 j〉
V ) | it = 1, ...,ON , ir = 1, ...,RN , j = 1, ...,VN}

, {ak | k = 1,2, ..., |A|}, (1)
where it denotes the index of a trajector, ir denotes the index of
a reference object, ON denotes the number of objects in O, RN
denotes the number of possible reference objects for the verb
C〈 j〉

V , and VN denotes the total number of CV in the lexicon.
Each belief module is defined as follows. First, the belief

module of speech, BS, is represented as the log probability of s
conditioned by z. Here, word/segment orders is learned by us-
ing bigrams/trigrams. Next, the belief module of motion, BM , is
defined as the log likelihood of a probabilistic model given the
maximum likelihood trajectory Ŷk for ak. The belief module
of vision, BI , is represented as the log likelihood of WT given
Object it ’s visual features x〈it 〉I . Similar to BI , the belief mod-
ule of motion-object relationship, BR, is represented as the log
likelihood of a probabilistic model given the visual features of
Objects it and ir. The belief module of behavioral context, BH ,
represents the adequateness of Object i as the referent under the
context q〈i〉 such as “Object i is being grasped”.

The shared belief function Ψ is defined as the weighted sum
of each belief module:

Ψ(s,ak,O,q〈it 〉) = max
z

{
γ1 logP(s|z)

+γ2 logP(Ŷk|x
〈it 〉
p ,x〈ir〉p ,C〈 j〉

V )

+γ3

(
logP(x〈it 〉I |WT )+ logP(x〈ir〉I |WL)

)
+γ4 logP(x〈it 〉I ,x〈ir〉I |C〈 j〉

V )

+γ5

(
BH(it ,q〈it 〉)+BH(ir,q〈ir〉)

)}
, (2)

where x〈ir〉p denotes the position of Object i, and γ = (γ1, ...,γ5)
denotes the weights of the belief modules. The Minimum Clas-
sification Error (MCE) learning is used for the learning of γ.

Inappropriate speech recognition results are re-ranked
lower by using Ψ. There are several methods for re-ranking
an utterance hypothesis (e.g. [6]). In contrast, information on
physical properties such as vision and motion is used in Ψ since
object manipulation needs physical interactions.

3. Learning Integrated Confidence Measure
for Generation of Utterances and Motions

3.1. Modeling Confidence for Utterance Understanding

The proposed method quantifies ambiguities in a user’s utter-
ances, and generates motions or utterances as responses by
maximizing a utility function. In this subsection, we first ex-
plain the ambiguity criterion used in this study.

Given a context q, a scene O, and an utterance s, the optimal
action âk is obtained by maximizing the shared belief function.

âk = argmax
ak∈A

Ψ(s,ak,O,q) (3)

We define the margin function d for the action ak ∈ A as the dif-

ference in the Ψ values between ak and the action maximizing
Ψ, a j ( j 6= k) :

d(s,ak,O,q) = Ψ(s,ak,O,q)−max
j 6=k

Ψ(s,a j,O,q) (4)

Let al be an action that gives the second maximum Ψ value.
When the margin for the optimal action âk is almost zero, the
shared belief values of âk and al is nearly equal; this means that
the utterance s is a likely expression for both âk and al . In con-
trast, a large margin means that s is an unambiguous expression
for âk. Therefore, the margin function can be used as a measure
of the utterance’s ambiguity.

Now we define the integrated confidence measure (ICM)
function by using a sigmoid function as follows:

f (d;w) =
1

1+ exp−(w1d+w0)
, (5)

where d is the value of the margin function for an action, and
w = (w0,w1) is the parameter vector. The ICM function is used
for modeling the probability of success.

3.2. Learning ICM Function

We now consider the problem of estimating the parameters w of
the ICM function based on logistic regression. The ith training
sample is given as the pair of the margin di and teaching signal
ui, {(di,ui)|i = 1, ...,N}, where ui is 0 or 1.

BLR [7] is used for obtaining the MAP estimate of w. A
univariate Gaussian prior with mean 0 and variance τi (i = 0,1)
on each parameter wi is used:

P(wi|τi) = N (0,τi) =
1√
2πτi

exp
−w2

i
2τi

(6)

3.3. Decision-Making on Multimodal Responses Based on
Expected Utility

Let a∗ be the action that the user intended to indicate by uttering
s. For safety reasons, it is undesirable for the robot to execute
an incorrect action ak (6= a∗). A confirmation request to the user
before the execution of an action can prevent the robot from ex-
ecuting an incorrect action. The ICM function can be used as
a criterion for making a decision about whether a confirmation
request is needed prior to executing the optimal action âk. In
the proposed method, the ICM function is also used when con-
firmation request utterances are generated.

Now we consider the problem of making optimal decisions
on responses to the user’s utterances. We assume that the re-
sponse is either the execution or confirmation of an action. The
optimal response is selected based upon the expected utility.

Let b1 be a response as a motion and b2 be a response as
a confirmation utterance. The ICM function f (d) models the
probability that the utterance is correctly recognized under the
margin d. The expected utility E[Ri] for a response bi(i = 1,2)
is estimated as follows:

E[Ri] = ri1 f (d)+ ri2(1− f (d)), (7)
where ri1 and ri2 denote the utility for bi in the cases of âk = a∗

and âk 6= a∗, respectively.
The equation E[R1] = E[R2] has the solution f (d) =

θ0 (0 < θ0 < 1) under the condition r12 < r22 < r21 < r11.
Therefore, we can use θ0 as the threshold for selecting the opti-
mal response b̂ = argmaxi E[Ri].

3.4. Generation of Confirmation Utterances

The proposed method paraphrases object descriptions to make
them more appropriate for the user and situation. Therefore, a
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confirmation utterance by the proposed method is not a mere
speech recognition result. To paraphrase the user’s utterances,
words are inserted into the segments WT and/or WL. The words
are selected from the lexicon L based on the maximization of
the margin d as follows.

Let ψ(s,ak,O,q〈it 〉,z) be the weighted sum of belief mod-
ules. The differences between ψ and Ψ are such that ψ does
not contain acoustic likelihood, and ψ is not maximized with
respect to z (cf. Equation (2)). We define dz as the margin given
z:

dz(s,a j,O,q,z) = ψ(s,a j,O,q,z)−max
k 6= j

ψ(s,ak,O,q,z)

Suppose that the word set c′ = {c′m | m = 1, ...,M} is in-
serted into the segment W (WT or WL). Here W is a sequence of
words: W , c1c2 · · ·c|W |, where |W | represents the length of W .
The optimal word set ĉ′ = {ĉ′m | m = 1, ...,M} and insertion-
position set p̂ = { p̂m | m = 1, ...,M} are obtained as follows:

(ĉ′, p̂) = argmax
c′m 6∈W, p

dz(s,a j,O,q,z) (8)

Thus, we obtain the following W ′ after the insertion.
W ′ = c1 · · ·cp̂1−1ĉ′1cp̂1 · · ·c p̂2−1ĉ′2c p̂2 · · ·c|W | (9)

These operations are performed for WT and/or WL, and finally
we obtain an updated conceptual structure z′:

z′ = (W ′
T ,W ′

L,WM). (10)
Based on the above, the LCore-DEC algorithm is summa-

rized as follows:

Input Let 〈O,q,s〉 be an input set; a scene, behavioral context,
and user’s utterance.

1. Generate trajectories for all items in the action candidate
set A (see Equation (1)), and obtain the shared belief val-
ues Ψ(s,ak,O,q) for every ak.

2. Obtain the optimal action âk according to Equation (3).
If f (d(s, âk,O,q)) ≥ θ0 holds, then execute âk and ter-
minate. Otherwise go to 3.

3. Initialize the confirmation target set A′ as A′ = A.

4. Let the target action a j = argmax
a j∈A′

f (d(s,a j,O,q)). Ini-

tialize the number of inserted words, M = 0.

5. Increment M : M ← M +1, and generate z′ according to
Equation (10).

6. If the updated margin d′ satisfies f (d′) ≥ θ0, go to 7.
Otherwise go to 6(a).

6(a) If there exists any word that can be added to z′,
then go to 5. Otherwise go to 9.

7. Make a confirmation utterance on a j. A speech is syn-
thesized according to z′. If W ′

T or W ′
L has no change from

the original WT or WL, it is not included in the utterance.

8. If the user’s response is positive, execute a j and termi-
nate. Otherwise remove a j from A′ and go to 8(a).

8(a) If A′ is empty, go to 9. Otherwise, go to 4.

9. Reject s by uttering “Sorry, I cannot understand.”, and
then terminate.

4. Experiments
4.1. Experimental Setup

We conducted experiments using a platform consisting of a ma-
nipulator with seven degrees of freedom (DOFs), a four-DOF

multifingered grasper, a microphone/speaker, a stereo vision
camera, and a gaze-expression unit. The visual features and po-
sitions of objects were extracted from image streams obtained
from the stereo vision camera. The visual features had six di-
mensions: three for color (L*a*b*) and three for shapes.

The lexicon used in the experiments contained 23 words (8
nouns, 8 adjectives, and 7 verbs). The user taught the names
or properties of objects in Japanese by showing the objects to
the robot. Unsupervised learning was used for obtaining the
phoneme sequences of the words [3]. Those words had been
grounded to the physical properties of objects and motions in
the learning phase of the lexicon [3, 5].

To evaluate the proposed method, we conducted two kinds
of experiments: (1) learning of the ICM function, and (2) gen-
eration of utterances and motions. The objective of Experiment
(1) is to investigate the number of samples necessary for conver-
gence of the learning. Experiment (2) was aimed at evaluating
the decrease in the failure rate for the motions.

In Experiment (1), we obtained the training and test data
as follows. A subject was told to sit across the table from the
robot, as shown in Figure 1, and make utterances in Japanese1

to make the robot manipulate objects. This flow which starts
from the subject’s utterance and ends with the robot’s manipu-
lation is called an episode. Thus, 100 pairs of utterance s and
scene O were obtained. Each pair was labeled with the action
intended by the subject, a∗. The average chance performance
for all of the data was 2.34%, and the average number of words
contained in each utterance was 2.54. Half of the data was used
as a training set and the other half was used as a test set. The
hyper-parameter τi (i = 0,1) was set to 100.

In Experiment (2), a subject had object manipulation dia-
logues with the robot. The training and test set were obtained
in the same manner as Experiment (1). The parameters of the
ICM function were trained by the training set (50 samples) and
fixed in Experiment (2). The dialogue was conducted as fol-
lows. First, a sample was drawn from the test set (50 samples),
and the scene O was reconstructed. Then, the recorded utter-
ance s for the sample was input to the system, and a response
was selected using the proposed method. If the response was
a confirmation utterance, the user made a positive or negative
response. An executed motion ak was compared with a∗ to de-
termine whether it was correct. An episode ended if the robot
executed a motion or the utterance was rejected. In Experiment
(2), θ0 was set to 0.7.

4.2. Results (1): Learning ICM Function

The qualitative results for the learning of the ICM function are
shown in the left-hand side of Figure 2.

The right-hand side of Figure 2 shows a quantitative evalua-
tion of the logistic regression. In this figure, the log likelihood L
of the ICM function given a test set is plotted against the num-
ber of training samples. The line shows the average log like-
lihood, where ten different combinations of a training and test
set were used. The left- and right-hand side figures reveal that
L converged after 20 training samples. Thus, Figure 2 clearly
indicates that the proposed method could give an appropriate
estimation of the probability.

4.3. Results (2): Generation of Motion and Utterances

First, we address the qualitative results. Figure 3 shows an ex-
ample dialogue between the subject (U) and the robot (R). The

1In this paper, the utterances are translated into English.
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Figure 2: Left: The forms of f (d;w) trained by (a) 10, (b) 20,
(c) 30, and (d) 50 samples. Right: Average test-set log likeli-
hood of the ICM function.

ICM value is displayed in the circle at the top right.
In Figure 3, the ICM value of the optimal action âk was

small: f (d) = 0.478 < θ0. Hence, a confirmation utterance was
the optimal response. Therefore, the robot first asked whether
“green box” was the trajector. Here, the word “green” was used
to describe the major difference between Object 2 (the green
box) and Object 3 (the blue box). In the second confirmation
utterance, the word “blue” was inserted into the segment WT ,
since this gave the maximum margin. In contrast, the landmark
was not mentioned in either generated utterance since no word
insertion to WL had a large influence on the ICM values.

Table 1 summarizes the quantitative results of decision-
making based upon the ICM values. In the table, Pf , Pr, Pc,
and Tc represent the incorrect motion execution rate, rejection
rate, confirmation utterance rate, and average number of confir-
mation requests, respectively:

Pf = N f /(Ns +N f ),
Pr = Nr/Na,

Pc = Nc/Na,

where Na, Ns, N f , Nc, and Nr denote the number of all episodes,
episodes in which correct motions were executed, episodes in
which incorrect motions were executed, episodes in which con-
firmation utterances were generated, and episodes in which the
subject’s utterances were rejected (i.e. no motions were exe-
cuted), respectively. Here, Na = Ns + N f + Nr. Tc means the
length of interactions; for example, there were two confirma-
tion requests in Figure 3.

Under the condition θ0 = 0, the robot always executes a
motion as a response to the subject’s utterance. We can regard
this condition as the baseline in which the proposed method
was not used. Pf was 12% (6/50) under this condition. Table 1
shows that Pf was less than 12% under other conditions, where
the proposed method was used. From Table 1, we can see that
Pf decreased with an increase in θ0. Specifically, we obtained
Pf = 6.5% (3/46) when θ0 = 0.9 and Pf = 2.6% (1/38) when
θ0 = 0.999. Table 1 reveals that confirmation utterances were
generated in at most half of the scenes since Pc was less than
50% in all cases. Table 1 shows that Tc was approximately 1.2
under all conditions other than those where θ0 = 0.

Finally, we investigate the rejection rate. Table 1 exhibits
that Pr increased with an increase in θ0. The episodes that ended
with rejection can be categorized into two groups: (1) utter-
ances giving f (d) ≥ θ0 could not be generated for the scenes,
and (2) the subject could not understand the generated utter-
ances. An example of (1) was a scene in which no combination
of the learned words could identify the trajector and/or land-
mark. Specifically, one of identical green boxes could not be
identified since words for spacial relationships such as “right”
or “below” was not learned in the experiments. An example of
(2) occurred when the generated utterance included the name of
an object that did not exist in the scene due to uncertainties in
image processing.

¨

§

¥

¦

[Situation: Object 2 was manipulated most recently]

U: Move-closer box Elmo.
R: Move-closer green box?
U: No.
R: Move-closer blue box?
U: Yes.
R: (The robot moves Object 3 closer to Object 1.)

Figure 3: Dialogue example: Motion execution with confirma-
tion utterances. The correct action is to move Object 3 (blue
box) closer to Object 1 (Elmo).

Table 1: Evaluation of decision-making based on the ICM value
θ0 0 0.7 0.9 0.99 0.999

Pf [%] 12.0 10.4 6.5 7.1 2.6
Pr[%] 0 4.0 8.0 16.0 24.0
Pc[%] 0 12.0 22.0 28.0 48.0

Tc - 1.17 1.27 1.21 1.25

5. Conclusion
In this paper, we proposed LCore-DEC that generates motions
and utterances in an object manipulation dialogue task to de-
crease the risk of incorrect motion executions by robots. One
of the contributions of this study is that we integrated learn-
ing techniques studied in different research fields within a prob-
abilistic framework; the learning of motions has been mainly
studied in the robotics community, while the learning of objects
has been studied in the computer vision and artificial intelli-
gence communities. Another contribution is the introduction of
utility-based dialogue management using Bayesian logistic re-
gression into a multimodal spoken dialogue system.
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