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Abstract— This paper presents a method to recognize and
generate sequential motions for object manipulation such as
placing one object on another or rotating it. Motions are learned
using reference-point-dependent probabilistic models, which are
then transformed to the same coordinate system and com-
bined for motion recognition/generation. We conducted physical
experiments in which a user demonstrated the manipulation
of puppets and toys, and obtained a recognition accuracy of
63% for the sequential motions. Furthermore, the results of
motion generation experiments performed with a robot arm
are presented.

I. INTRODUCTION

The recognition of motions has gained considerable in-
terest from the computer vision, robotics, and ubiquitous
computing communities [5], [9]. In the robotics community,
one of the most important applications of motion recognition
is imitation learning [1], [6]. Imitation learning research ex-
plores methods to teach a robot new motions by user-friendly
means of interaction. In the previous studies, machine learn-
ing algorithms such as Forward-Inverse Relaxation Model
[8], Gaussian mixture models (GMMs) [2], hidden Markov
models (HMMs) [4], and recurrent neural networks [10], [13]
have been used for motion learning.

For robots aimed at household environments, motions such
as “to put the dishes in the cupboard” are fundamental,
but difficult to realize. This is because the desired motion
depends on the size and shape of the dishes, as well as those
of the cupboard, and also on whether the cupboard has a
door. In [5], the difficulties involved in learning such motions
are discussed. Ogawara et al. proposed a method in which
the relative trajectories between two objects are modeled by
HMMs [11]. Furthermore, we have proposed a motion learn-
ing and generation method that is based on reference-point-
dependent HMMs, which enabled the learning of motions
such as rotating an object, drawing a spiral, and placing a
puppet on a box [3], [14].

In this paper, we propose a novel method that recognizes
and generates sequential motions for object manipulation
such as placing an object on another (place-on) and moving
it away (move-away). In this method, motions are learned
using reference-point-dependent probabilistic models, which
are then transformed and combined. These composite proba-
bilistic models are used for the recognition of the sequential
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Fig. 1. Hardware platform used in the experiments.

motions performed by a user. Moreover, motions can be gen-
erated from the composite probabilistic models in accordance
with user instructions, which can then be performed by a
robot arm. Fig. 1 shows the hardware platform used in this
study. The system has multimodal interfaces such as a stereo
vision camera and a microphone.

The rest of this paper is organized as follows: Section II
first states the problem addressed herein, briefly reviews re-
lated work, and introduces our method. Section III describes
the motion recognition and generation method in detail. The
experimental results for the recognition and generation of
sequential motions are presented in Section IV. Section V
discusses some problems of our method, and Section VI
concludes the paper.

II. LEARNING REFERENCE-POINT-DEPENDENT
MOTIONS

A. Reference-Point-Dependent Motions

Motions such as “place-on” and “raise” are dependent on
reference points. Let us take the example shown in the left-
hand figure of Fig. 2. The figure depicts a camera image in
which the green puppet is moved along the dotted line. When
the reference point is the blue box, we can provide a label
“place-on” to the trajectory. However, the label must be “let
the green puppet jump over the green box (jump-over)” when
the reference point is the green box.

In cognitive linguistics, a trajector is defined as a partici-
pant (object) that is focused on. A landmark has a secondary
focus and a trajector is characterized with respect to a
landmark. Words representing spatial relationships such as
“away” and “left of” are described in terms of a relationship
between a trajector and a landmark [7].



Fig. 2. Left: Example shot of an image stream. The user is manipulating the
green puppet. The dotted line represents the trajectory. Right: Preprocessed
visual features obtained from the image stream.

Now, we consider the problem of learning reference-point-
dependent motions in the framework of imitation learning
[1], [6] by a robot. Here, clustering manipulation trajectories
and mapping them to a verb are not sufficient for the
learning if the trajectories are considered only within the
camera coordinate system. For simplicity, we assume that
the mapping between the camera coordinate system and
the world coordinate system is given, and that the user’s
utterances are accurately recognized.

Regier investigated a model describing the spatial relation-
ship between two objects [12]. He proposed to model verbs
as the time evolution of the spatial relationship between a
trajector and a landmark. In [11], the relative trajectories
between two objects are modeled by using probabilistic
models. The probabilistic models are used for the generation
of manipulation trajectories.

In contrast, we have proposed a machine learning method
for learning object-manipulation verbs by reference-point-
dependent probabilistic models [3], [14]. The method esti-
mates (1) the reference point, (2) intrinsic coordinate system
type, which is the type of coordinate system intrinsic to a
verb, and (3) probabilistic model parameters of the motion
that is considered in the intrinsic coordinate system. Let us
consider two examples, “raise” and “move-closer” (Fig. 3).
We can reasonably assume that the reference point of “raise”
is the trajector’s center of gravity. The intrinsic coordinate
system can be a Cartesian coordinate system, as shown in the
left-hand figure. In the case of “move-closer,” another type
of intrinsic coordinate system is necessary. In this case, the
x axis of the coordinate system passes through the centers of
gravity of the trajector and the landmark. Before we describe
the proposed method, in the next subsection, we briefly
introduce the basic concepts and notations of the learning
method for reference-point-dependent motions.

B. Motion Learning by Reference-Point-
Dependent Probabilistic Models

Consider that L kinds of learning data are given for a
verb. Let Vl denote the lth learning data. Vl consists of the
motion information of the trajector, Yl, and the candidate set

Fig. 3. Relationship between trajector/landmark, a reference point, and
an intrinsic coordinate system. The spheres, ellipsoids, and box represent
objects, and the arrows represent the axes of the intrinsic coordinate systems.
Left: “raise.” The small sphere is the trajector, and the reference point is its
center. The x axis of the intrinsic coordinate system is horizontal. Right:
“move-closer.” The direction of the x axis is toward the trajector from the
landmark.

of reference points, Rl, as follows:

Vl = (Yl,Rl), (1)
Yl = {yl(t)|t = 0, 1, ..., Tl} , (2)

yl(t) =
[
xl(t)>, ẋl(t)>, ẍl(t)>

]>
, (3)

Rl = {Ol, xl(0), xcenter} ,
{
xrl

∣∣rl = 1, 2, ..., |Rl|
}

,
(4)

where xl(t), ẋl(t), and ẍl(t) denote the position, velocity,
and acceleration of the trajector, respectively; Tl denotes the
duration of the trajectory; and Ol denotes the set of the static
objects’ centers of gravity. The operator | · | represents the
size of a set. The reason why O is included in R is that
the static objects are candidate landmarks. We also include
the first position of the trajector, xl(0), in R so that we
can describe a motion concept that is dependent only on
the object’s trajectory. Additionally, the center of the camera
image, xcenter, is added to R to describe motion concepts
that are independent of the positions of the objects.

We assume that there are K types of intrinsic coordinate
systems, and these are provided by the designer. We denote
the type of the intrinsic coordinate system by k. k corre-
sponds to a verb, and the reference point corresponds to each
Vl. We obtain the estimated intrinsic coordinate system for
the lth data from the estimation of k and the reference point
xrl .

Let Ck(xrl )Yl denote the trajectory in the intrinsic coordi-
nate system Ck(xrl). Henceforth, parameters in a particular
coordinate system are written in a similar manner. Now, the
index series of reference points, r = {rl|l = 1, 2, ..., L}, the
type of the intrinsic coordinate system, k, the parameters of
a probabilistic model regarding trajectories, λ, are searched
for using the following maximum likelihood criterion:

(r̂, k̂, λ̂) = argmax
r,k,λ

L∑
l=1

log P (Yl|rl, k, λ), (5)

= argmax
r,k,λ

L∑
l=1

log P (Ck(xrl )Yl;λ), (6)

where ·̂ represents estimation. In [14] and [3], the solution
to Equation (6) is explained in detail.



III. COMBINATION OF REFERENCE-POINT-DEPENDENT
HMMS

A. Transformation of HMMs

Now we consider the problem of the recognition and gen-
eration of sequential motions based on composite reference-
point-dependent HMMs. In speech recognition, HMMs are
usually combined by simply aligning them, since they share
the same coordinate system. In contrast, in HMM-based
speech synthesis, the coordinate systems used in the training
phase, C, and that used in the trajectory generation phase,
C ′ are sometimes different. In such cases, the trajectories are
generated in C and are then transformed from C to C ′.

However, in neither ways can we combine two reference-
point-dependent HMMs. This is because the jth HMM
parameters are dependent on the (j−1)th HMM parameters
(Fig. 4). Fig. 5 illustrates an example of the process of
combining two reference-point-dependent HMMs. To com-
bine HMMs corresponding to “raise” and “move-closer,”
the output probability distributions of each HMM must be
transformed since they represents distributions on different
coordinate systems.

Fig. 4. Schematic of the combination of two reference-point-dependent
HMMs. W represents the world coordinate system.

Fig. 5. Example of transformation for the combination of two HMMs,
“raise” and “move-closer.” Each dotted circle represents the variances of
the output probability distribution at each state of a left-to-right HMM. The
direction of state transition is indicated by the color darkness. The intrinsic
coordinate system for “move-closer” is transformed so that the x axis passes
through both the landmark (the reference point of “move-closer”) and the
last position of the HMM in “raise.” The dotted line represents the composite
trajectory.

An advantage of transforming intrinsic coordinate systems
is the smoothness of the composite trajectories. In our
method, velocity and acceleration data are used for learning

as well as position data. For safety reasons, changes in the
velocity and acceleration data should be continuous. It is
therefore important to obtain smooth trajectories of ẋ and ẍ
when combining two HMMs. Let us consider a case in which
verbs dependent only on velocity information, e.g. “throw,”
are to be combined. If two HMMs were simply aligned to
generate the composite trajectory, the velocity changes might
be discontinuous in this case. In contrast, our method, which
is described in detail below, generates a smooth trajectory.

Now we consider the problem of obtaining a composite
HMM from the transformation and combination of reference-
point-dependent HMMs. Let λ(j) and C(j) denote the pa-
rameters and the intrinsic coordinate system, respectively, of
the jth HMM, which is a left-to-right HMM. The output
probability density function of each state is modeled by
a single Gaussian. The mean position vector at state s,
C(j)

µx(s), is transformed by the following homogeneous
transformation matrix:[

Wµx(s)
1

]
=[

W
C(j)R

Wµ
(j−1)
x (Sj−1)

0 1

] [
C(j)

µx(s) − C(j)
µx(1)

1

]
, (7)

(j = 1, 2, ..., D, s = 1, 2, ..., Sj)

where W
C(j)R denotes the rotation matrix from C(j) to the

world coordinate system W . Furthermore, s = 0 and s =
Sj + 1 are defined as the initial and final states of the jth
HMM, respectively. The mean vector of velocity, µ

(j)
ẋ (s),

and the mean vector of acceleration, µ
(j)
ẍ (s), are rotated by

using the rotation matrix W
C(j)R.

However, the diagonal items of covariance matrices for
position are approximated as follows:

diag WΣx(s) = diag C(j)
Σx(s), (8)

where WΣx(s) and C(j)
Σx(s) denote the covariance matrices

at state s in coordinate systems W and C(j), respectively.
The non-diagonal items of the matrices are equal to zero.
The matrices for velocity and acceleration are transformed
by the same simple approximation. We do not perform a
rotation of the covariance matrix because the HMM-based
trajectory generation method [15] we use does not deal with
full covariance matrices.

B. Recognition of Motion Sequences by Composite HMMs

Recognition of sequential motions by reference-point-
dependent HMMs can be formalized as the problem of
obtaining the most likely probabilistic model for trajectory
Y under the condition that verbs, the intrinsic coordinate
systems corresponding to verbs, and the HMM parameters
corresponding to the verbs are given. Here, let V = {vi|i =
1, 2, ..., |V |} denote a set of verbs, λi denote HMM param-
eters corresponding to verb vi, and ki denote the index of
intrinsic coordinate systems corresponding to verb vi.

Suppose that the trajectory of an object, Y , and
the candidate set of reference points, R, are obtained
from an image stream (c.f. Section II-B). Let (i, r) =



(i(1), i(2), ..., i(D), r(1), r(2), ..., r(D)) denote a D-tuple of
verb-landmark pairs. We obtain a composite HMM ΛD(i, r)
from the method explained in Section III-A since the co-
ordinates of the reference points are obtained from R and
r(j). The maximum likelihood index sequence of the verb-
landmark pairs, (î, r̂), is searched for through the following
equation:

(î, r̂) = argmax
i,r,D

P (Y|i, r, D, R) (9)

= argmax
i,r,D

P (Y|ΛD(i, r)) (10)

C. Generation of Motion Sequences by Composite HMMs

Now we consider the problem of generating trajectories
of sequential motions from composite HMMs. Suppose that
a static image and the index of the trajector are given. As in
Section II-B, we extract the candidate set of reference points,
R. Our proposed method deals with two types of motion
generation: 1) explicit instruction and 2) target instruction.

1) Explicit Instruction: The trajectory corresponding to
the index sequence of the verb-landmark pairs, (i, r), is
obtained as follows:

Ŷ = argmax
Y

P (Y|rtraj, QD(i), r, R) (11)

= argmax
Y

P (Y|xrtraj , QD(i), ΛD(i, r)), (12)

where QD(i) denotes the state sequence of the HMM corre-
sponding to verb vi, and xrtraj denotes the initial position
of the trajector. The method explained in [15] provides
the maximum likelihood trajectory from the unknown state
sequence QD(i).

2) Target Instruction: Next we consider the problem of
obtaining the index sequence of verb-landmark pairs, (î, r̂),
which affords the maximum likelihood trajectory Ŷ from
initial position xrtraj to the goal position xgoal. We obtain

(Ŷ, î, r̂) by conditioning the right side of Equation (12) with
xgoal and then adding (i, r) to the search arguments:

(Ŷ, î, r̂) = argmax
Y,i,r,D

P (Y|xrtraj , xgoal, QD(i), ΛD(i, r)),

where the number of combined HMMs, D, is a constant that
acts as a search depth parameter. We obtain the solution by
applying Tokuda’s method [15] as well.

IV. EXPERIMENTS

A. Experimental Setup

The experiments were conducted with a Mitsubishi Heavy
Industries PA-10 manipulator with seven degrees of freedom
(DOFs). The manipulator was equipped with a BarrettHand,
a four-DOF multifingered grasper. The user’s movements
were recorded by a Bumblebee 2 stereo vision camera at
a rate of 30 [frame/s]. The size of each camera image was
320 × 240 pixels. The left-hand figure of Fig. 2 shows an
example shot of an image stream, and the right-hand figure
shows the internal representation of the image stream. All the
motion data used for learning and recognition were obtained
from physical devices. In addition, motion generation results

were examined in an environment using the manipulator and
physical objects such as puppets and toys.

Motions were taught by the user in a learning phase be-
forehand, and they were fixed throughout the motion recog-
nition/generation experiments. During the learning phase,
the user taught verbs to the robot by uttering them and
demonstrating their trajectories. The following verbs were
used for learning.

raise, move-closer, move-away, rotate, place-on,
put-down, jump-over

For each verb, the number of training data, L = 9.
Fig. 6 illustrates some example trajectories in the training

set. In the figure, verbs and the estimated type names
of the intrinsic coordinate systems are shown below the
corresponding figures. We defined the following types of
intrinsic coordinate systems:
C1 A coordinate system with its origin at the landmark

position. C1 is a transformed camera coordinate system.
The x axis is inverted in case the x coordinate of
the original position of the trajector is negative after
transformation.

C2 An orthogonal coordinate system with its origin at the
landmark position. The direction of the x axis is from
the landmark toward the trajector.

C3 A translated camera coordinate system with its origin
at the original position of the trajector.

C4 A translated camera coordinate system with its origin
at the center of the image.

We set the maximum search depth parameter Dmax as
Dmax = 3 throughout the motion recognition/generation
experiments. In addition, we do not consider collisions
between objects in the motion generation experiments.

B. Result (1): Motion Recognition

The user was presented with six pairs of randomly chosen
verbs, and performed the motions sequentially. The manipu-
lation trajectories and the positions of the static objects were
recorded to obtain a test set. For each pair, five different
object settings were given. Therefore, the size of the test set
was 30.

Fig. 7 illustrates example trajectories in the test set. In
the figures, the top three recognition results for each scene
are shown. The bracketed pairs and numbers represent the
estimated sequences of verb-landmark pairs and the log
likelihood, respectively.

We can see that a correct recognition result was obtained
for the left-hand figure of Fig. 7. On the other hand, the
correct recognition result for the right-hand figure does not
have the maximum likelihood. This is considered to be due
to the approximation used earlier ( Equation (8) ). Here, the
point is that only C2 requires a rotation of the covariance
matrix to be combined. And in this case, the correct verb-
landmark sequence contains “move-away,” which is a C2

verb.
Table I shows the number of correctly recognized samples.

The column labeled “n-best” stands for the number of correct



“place-on” (C1) “jump-over” (C1)

“move-closer” (C2) “move-away” (C2)

“raise” (C3) “put-down” (C3)

“rotate” (C3)
Fig. 6. Examples of training data.

answers contained in top n recognition results. The accuracy
of 1-best, 2-best, and 3-best recognition results are 63%,
83%, and 87%. In the table, we obtain an accuracy of 80%
(12 / 15) for sequences (1), (3), and (4). This is reasonable
since we have obtained an accuracy of 90% for the recogni-
tion of single motions in preliminary experiments. However,
we obtain an accuracy of 47% (7 / 15) for sequences (2),
(5), and (6) which contains at least one C2 verb. This result
also supports the fact that the approximation (Equation (8))
deteriorated the recognition accuracy.

1. [place-on, 3] [place-on, 2] : -22.04
2. [jump-over, 2] [place-on, 2] : -23.79
3. [place-on, 3] [move-away, 3] : -28.79

1. [move-away, 2] : -22.18
2. [rotate] [move-away, 2] : -22.65
3. [rotate] : -25.06

Fig. 7. Examples of test set. The recognition results for each scene are
shown below the corresponding figure. Left: “place object 1 on object 3,
then place object 1 on object 2.” Right: “rotate object 1, then move object
1 away from object 2.”

C. Result (2): Motion Generation

Fig. 9 shows an example trajectory generated by the
proposed method. The solid line represents the trajectory

TABLE I
NUMBER OF CORRECTLY RECOGNIZED SAMPLES.

Test set 1-best 2-best 3-best
(1) rotate + rotate 5 5 5
(2) move-away+move-closer 3 3 3
(3) place-on + place-on 3 5 5
(4) rotate + jump-over 4 4 4
(5) rotate + move-away 2 4 4
(6) move-closer + place-on 2 4 5
Total 19/30 25/30 26/30

(63%) (83%) (87%)

Fig. 9. Generated trajectory in the explicit instruction mode.

generated in the explicit instruction mode. The input for the
explicit instruction mode was as follows:

• trajector ID = 2
• verb-landmark pairs = [move-away, 1] [jump-over, 4]

[move-closer, 4]
From Fig. 9, we can see that the proposed method has
generated an appropriate trajectory. To support this, the
manipulator is shown performing the generated trajectory is
shown in Fig. 8.

For the target instruction mode, the top three trajectories
are shown in the Fig. 10. The trajector ID was set to 1, and
the goal position used is indicated in the figure. In the figure,
the solid, broken, and dotted lines represent the best, second-
best, and third-best trajectories, respectively. Furthermore,
the top three verb-landmark pairs are shown in the figure.

V. DISCUSSION

Now we discuss two causes for the deterioration in the
recognition accuracy.

The first one is that sequential motions performed by
users tend to be smoothly combined. However, the likeli-
hood for such motions is not always high. This is because
the trajectory in the training set always starts from pause
(ẋl(0) = 0), and therefore, the composite HMMs contain
states representing pauses between motions.

We think that this problem can be solved by using pause
HMMs. In this case, a sequence of HMMs comprising a mo-
tion HMM sandwiched between pause HMMs are trained1.

1In speech recognition, a sequence of HMMs corresponding to silence
(silB), phoneme, and silence (silE) are sometimes used for the training of
single phonemes.



Fig. 8. Sequential photographs of the manipulator executing the trajectory shown in Fig. 9.

goal

1

1. (solid line) [jump-over, 3] [move-closer, 2] : -16.45
2. (broken line) [jump-over, 3] : -18.66
3. (dotted line) [place-on, 3] [move-closer, 2] : -24.00

Fig. 10. Generated trajectories in the target instruction mode.

Furthermore, we can obtain a composite HMM by aligning
the HMMs of pause, motion A, motion B, and pause and
thereby combine two motions.

Another problem is that Equation (8) does not consider the
full covariance matrices, so the rotation of coordinate sys-
tems is ignored. As stated above, we think this approximation
deteriorated the recognition accuracy for the C2 verbs. In
the future work, we will perform the rotation of covariance
matrices.

VI. CONCLUSION

Within environments shared by humans and machines, it is
important that machines be able to report their internal states
to humans in a comprehensive manner. For example, it is
critical to the safety of people working around machines that
a robot functioning in the same area be able to communicate
what it will do next. In this paper, we have described a
method to (1) learn motions grounded in real world actions,
(2) combine them to recognize human motions, and (3)
combine them to generate motions in accordance with user
instructions.
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