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Abstract 
This paper summarizes the online machine learning method 
LCore, which enables robots to learn to communicate with 
users from scratch through verbal and behavioral interaction 
in the physical world. LCore combines speech, visual, and 
tactile information obtained through the interaction, and 
enables robots to learn beliefs regarding speech units, words, 
the concepts of objects, motions, grammar, and pragmatic 
and communicative capabilities. The overall belief system is 
represented by a dynamic graphical model in an integrated 
way. Experimental results show that through a small, 
practical number of learning episodes with a user, the robot 
was eventually able to understand even fragmental and 
ambiguous utterances, respond to them with confirmation 
questions and/or actions, generate directive utterances, and 
answer questions, appropriately for the given situation. This 
paper discusses the importance of a developmental approach 
to realize personally and physically situated human-robot 
conversations.  

Introduction 
In order to support human activities in everyday life, robots 
should adapt their behavior in response to situations which 
differ from user to user. One of the essential features of 
such adaptation is the ability of a robot to share 
experiences with the user in the physical world. This 
ability should be considered in terms of spoken language 
communication, which is one of the most natural interfaces.  
 The process of human communication is based on 
certain beliefs shared by those communicating (Sperber & 
Wilson 1995). Language is one such shared belief that is 
used to convey meanings based on its relevance to other 
shared beliefs. These shared beliefs are formed based on 
sharing interactive experiences with the environment and 
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with other people, and the meanings of utterances are 
embedded in these shared experiences. Therefore, language 
processing methods must make it possible to reflect shared 
experiences. 
 However, existing language processing methods, which 
are characterized by fixed linguistic knowledge, do not 
make this possible (Allen et al. 2001). In these methods, 
information is represented and processed by symbols 
whose meaning has been predefined by the machines’ 
developers. Therefore, experiences shared by a user and a 
machine under personal situations in the physical world 
can neither be expressed nor interpreted. As a result, users 
and robots fail to interact in a way that accurately reflects 
shared experiences. 
 To overcome this problem and to achieve natural dialog 
between humans and robots, we should use methods that 
satisfy the following requirements in terms of beliefs the 
robots have: 

1) Grounding: Beliefs that robots have must be grounded 
in the personal physical world. Hence, linguistic beliefs 
should be represented by an integrated system, including 
other cognitive beliefs regarding perception, actions, and 
so on. The theoretical framework for grounding 
language was presented in the Reference (Roy 2005). 
Several computational studies have explored the 
grounding of the meanings of utterances in 
conversations in the physical world (Winograd 1972; 
Shapiro et al. 2000). These previous works, however, 
have not pursued the learning of new grounded beliefs. 

2) Scalability: The situation in interactions between a user 
and a robot changes continuously. To enable robots to 
execute linguistic communication appropriately in a new 
situation, grounded linguistic beliefs should be 
transmutable and scalable. Robots themselves must be 
able to learn new beliefs that reflect their experiences. 
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3) Sharing: Because utterances are processed on the basis 
of the beliefs assumed to be shared by a user and a robot, 
the grounded beliefs, which are learned, should be 
shared. To form such shared beliefs, the robot should 
possess a mechanism that enables the user and the robot 
to infer the state of each other’s belief systems in a 
natural way by coordinating their utterances and actions.  

 All these requirements show that learning ability is 
essential. Cognitive activities related to grounding, 
scalability, and sharing can be observed clearly in the 
process of language acquisition by infants as well as in 
everyday conversation by adults. Therefore, we have been 
developing a method that enables robots to acquire 
linguistic communication capabilities from scratch through 
verbal and nonverbal interaction with users, instead of 
directly pursuing language processing. 

Language acquisition by machines has been attracting 
interest in various research fields, and several pioneering 
studies have developed algorithms based on inductive 
learning using sets of pairs, where each pair consists of a 
word sequence and nonlinguistic information about its 
meaning. In several studies, visual, rather than symbolic, 
information was given as nonlinguistic information (Dyer 
& Nenov 1993; Regier 1997). Spoken-word acquisition 
algorithms based on unsupervised clustering of speech 
tokens have also been described (Gorin et al. 1994; 
Nakagawa & Masukata 1995; Roy & Pentland 2002). 
Steels examined the socially interactive process of 
evolving grounded linguistic knowledge shared by 
communication agents from the viewpoint of game theory 
and a complex system (Steels  2003). 

In contrast, the method (Iwahashi 2007; Iwahashi 2008) 
described in this paper, which is called LCore, satisfies the 
above-mentioned three requirements simultaneously and 
focuses on online learning of personally situated language 
use through verbal and nonverbal interaction with a user in 
the real physical world. LCore applies information from 
raw speech and visual observations and tactile 
reinforcement in an integrated way, and enables a robot to 
learn incrementally and online beliefs regarding speech 
units, words, concepts of objects, motions, grammar, and 
pragmatic and communicative capabilities. 

A robot’s belief system, encompassing these beliefs, is 
represented by a dynamic graphical model that has a 
structure reflecting the state of the user’s belief system; 
therefore, learning makes it possible for the user and the 
robot to infer the state of each other’s belief systems. 
Based on this belief system, LCore enables the robot to 
understand even fragmentary and ambiguous utterances of 
users, respond to them with confirmation questions and/or 
actions, generate directive utterances, and answer questions, 
appropriately for a given situation.  

In particular, LCore enables the robot to learn these 
capabilities with relatively little interaction. This feature is 
also important because a typical user will not tolerate 
extended interaction with a robot that cannot communicate, 
and situations in actual everyday conversation change 
continuously. 

Learning Setting 
The spoken-language acquisition task discussed in this 
study was set up as follows: We performed experiments 
using the robotic platform shown in Fig. 1. The robot 
consisted of a manipulator with seven degrees of freedom 
(DOFs), a four-DOF multi-fingered grasper, a head unit, a 
directional microphone, a speaker, a stereo vision camera, 
and an infrared sensor. The head unit moved to indicate 
whether its gaze was directed at the user or at an object. A 
touch sensor was attached to the robot’s hand for inputting 
a tactile reinforcement signal. A user and the robot looked 
at and moved the objects on the table shown as Fig. 1.  
 Initially, the robot did not possess any linguistic 
knowledge or concepts regarding the specific objects and 
the way in which they could be moved. First, to help the 
robot learn speech units, the user spoke for approximately 
one minute. Then, interactions were carried out to learn 
words, concepts of objects, motions, grammar, and 
pragmatic and communicative capabilities. Here, the 
communicative capability means that of understanding the 
type of the speech act of a user’s utterance, and selecting 
an appropriate response from among moving an object, 
pointing at an object, and uttering an answer. The learning 
episodes for them could be carried out alternately, and 
were as follows: 
Concepts of objects and words referring them: The user 

pointed to an object on the table while uttering a word 
describing it. The objects used included boxes, stuffed 
and wooden toys, and balls. 

Motions and words referring them: The user moved an 
object while uttering a word describing the motion1.  

Grammar: The user moved an object while uttering a 
sentence describing the action, such as “Place-on small 
frog green box” 2. Note that function words were not 
used because the learning method could not learn them.   

Pragmatic capability: Using an utterance and a gesture, 
the user asked the robot to move an object, and the robot 
responded. If the robot responded incorrectly, the user 
slapped the robot’s hand 3. The robot also asked the user 
to move an object, and the user acted in response. 

                                                 
1 The utterance is restricted to a word in each episode for learning an 
object and motion..  
2 Utterances made in Japanese have been translated into English in this 
paper. 
3 The physical retribution was used rather than an utterance, e.g. “no that 
is incorrect”, because the robot has not learned such utterance.  

Figure 1: Robotic platform and its interaction with user. 
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Communicative capability: The user asked the robot to 
do something. If the robot did not respond correctly, the 
user indicated the correct response by moving or 
pointing at an objector, or uttered an answer. 

Learning Method 

Speech Units 
Speech is a time-continuous one-dimensional signal. A 
robot learns statistical models of speech units from such 
signals without being provided with transcriptions of 
phoneme sequences or boundaries between phonemes. The 
difficulty of learning speech units is ascribed to the 
difficulties involved in speech segmentation, the clustering 
of speech segments into speech units, and the decision on 
the number of the speech units. For these difficulties, the 
methods based on unsupervised learning of speech unit 
HMMs were proposed (Iwahashi  2003; Iwahashi 2008). 

Words 
To learn words, static or moving images of objects and 
speech describing them are used. The lexicon consists of a 
set of lexical items, and each lexical item consists of 
statistical models of a spoken word and a concept. The 
statistical models of spoken words are represented by the 
concatenation of the speech units. The words are 
categorized into the following three types: 1) those that 
refer to perceptual characteristics of objects, such as blue, 
big, apple, and Kermit, 2) those that refer to abstract 
meanings in terms of objects, such as tool and food, and 3) 
those that refer to motions, such as place on and move up. 
Perceptual Characteristics of Objects. In general, the 
difficulty of acquiring words that refer to objects can be 
ascribed to the difficulties involved in specifying features 
and extending them to other objects.  
 We proposed an interactive learning method that mainly 
addresses the problem of extension (Iwahashi 2008). The 
robot decides whether the input word is one in its 
vocabulary (a known word) or not (an unknown word). If 
the robot judges that the input word is an unknown word, it 
registers it in its vocabulary. This decision is made using 
both speech and visual information about the objects. 
 In addition, we proposed a learning method that allows 
sentence utterances, which consists of unknown words, 
instead of words as speech input (Taguchi et al. 2009). In 
the method, in order to obtain a lexicon, a statistical model 
of the joint probability of a spoken utterance and an object 
is learned based on the minimum description length 
principle. This model consists of a list of the phoneme 
sequences of words and three statistical models, namely, a 
sentence acoustic model, a word bigram model, and a word
meaning model. By this method, words were learned with 
84% phoneme accuracy.  
 The model for each image category is represented by a 
multidimensional Gaussian function in a twelve 
dimensional visual feature space (in terms of shape, color, 
and size), and it is learned using a Bayesian method every 

time an object image is given. Moreover, this concept is 
extended to multimodal representation including visual, 
tactile, and acoustic features based on a bag of features 
model  (Nakamura et al. 2007) . 
Abstract Meanings in Terms of Objects. Here, we 
consider words that refer to concepts that are more abstract 
and that are not formed directly from perceptual 
information, such as “tool,” “food,” and “pet.” In a study 
on the abstract nature of the meanings of symbols (Savage-
Rumbaugh 1986), it was found that chimpanzees could 
learn the lexigrams (graphically represented words) that 
refer to both individual object categories (e.g., “banana,” 
“apple,” “hammer,” and “key”) and the functions (“tool” 
and “food”) of the objects.  
 A method that enables robots to gain this ability has 
been proposed (Nakamura et al. 2009). In this method, the 
movements that are given to the objects are taken as the 
objects’ functions. Learning is based on the statistical 
model selection using the variational Bayes method.  
Motions. While words that refer to objects are nominal, 
words that refer to motions are relational. The concept of 
the motion of a moving object is represented by a time-
varying spatial relationship between a trajector and a 
landmark based on cognitive linguistics (Langacker 1991). 
The trajector is an entity characterized as the figure within 
a relational profile, and the landmark is entity 
characterized as the ground that provides a point of 
reference for locating the trajectory. Therefore, the concept 
of the trajectory of an object depends on perspective. In 
Fig. 2, for example, the trajectory of the stuffed toy on the 
left moved by the user, as indicated by the white arrow, is 
understood as move over and place on when the landmarks 
are considered to be the stuffed toy in the middle and the 
box on the right, respectively. 
 In general, however, information about what is a 
landmark is not obtained in learning data. The learning 
method must infer the landmark selected by a user in each 
scene. In addition, the type of intrinsic coordinate system 
in the space should also be inferred to appropriately 
represent the graphical model for each concept of motion. 
A method that can solve this problem is proposed in the 
References (Haoka & Iwahashi 2000; Sugiura & Iwahashi 
2008). In this method, the concept of a motion is 
represented by a HMM. Landmarks and intrinsic 
coordinate systems are considered to be latent variables, 
and they are inferred using an expectation maximization 

Figure 2:  Scene example in which utterances were made 
and understood.  
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(EM) algorithm. By this method, each motion concept 
could be learned by showing about five different 
movements. The trajectory for the motion referred to by a 
motion word is generated by maximizing the output 
probability of the learned HMM, given the positions of a 
trajector and a landmark.  

Grammar 
To learn grammar, moving images of actions and speech 
describing them are used. The robot should detect the 
correspondence between a semantic structure in the 
moving image and a syntactic structure in the speech. 
However, such semantic and syntactic structures are not 
observable. While an enormous number of structures can 
be extracted from a moving image and speech, the method 
should select those with the most appropriate 
correspondence between them. Grammar is statistically 
learned using such correspondences, and is then inversely 
used to extract the correspondence. 
 It is assumed that each utterance is generated on the 
basis of stochastic grammar, based on a conceptual 
structure. The conceptual structure used here is a basic 
schema that is applied in cognitive linguistics.  The word 
sequence of utterance s is interpreted as a conceptual 
structure z = [(z1, Wz1), (z2, Wz2), (z3, Wz3)], where zi 
represents the attribute of a phrase and has a value among 
{M, T, L}. WM, WT, WL represent the phrases describing a 
motion, a trajector, and a landmark, respectively. For 
example, when the image is the same as that shown in Fig. 
2, and the corresponding utterance is “Place-on small frog 
brown box,” then the utterance is interpreted as follows: 
[(M, place-on), (T, small frog), (L, brown box)].   
 The grammar is a statistical language model that is 
represented by a set of occurrence probabilities for the 
possible orders of attributes in the conceptual structure, 
and is learned using Bayesian method.  

Pragmatic Capability 
The meanings of utterances are conveyed based on certain 
beliefs shared by those communicating in the situations. 
When a participant interprets an utterance based on his/her 
assumptions that certain beliefs are shared and is 
convinced, based on certain clues, that the interpretation is 
correct, he/she gains confidence that the beliefs are shared. 
On the other hand, because the sets of beliefs assumed to 
be shared by participants actually often contain 
discrepancies, the more beliefs a listener needs to 
understand an utterance, the greater is the risk that the 
listener will misunderstand it. 
 As mentioned above, a pragmatic capability of the robot 
relies on the capability to infer the state of a user’s belief 
system. Therefore, the method should enable the robot to 
adapt its assumption of shared beliefs rapidly and robustly 
through verbal and nonverbal interaction. The method 
should also control the balance between (i) the 
transmission of the meanings of utterances and (ii) the 
transmission of information about the state of belief 
systems in the process of generating utterances. 

 The following is an example of generating and 
understanding utterances based on the assumption of 
shared beliefs. Suppose that in the scene shown in Fig. 2, 
the frog on the left has just been put on a table. If the user 
in the figure wants to ask the robot to place a frog on the 
box, he may say, “Place-on frog box.” In this situation, if 
the user assumes that the robot shares the belief that the 
object moved in the previous action is likely to be the next 
target for movement and the belief that the box is likely to 
be something for the object to be placed on, he might just 
say “Place-on 1 .” To understand this fragmentary and 
ambiguous utterance, the robot must possess similar beliefs. 
If the user knows that the robot has responded by doing 
what he asked it to, this knowledge would strengthen his 
confidence that the beliefs he assumed to be shared are 
really shared. It can be understood that the former 
utterance is more effective than the latter utterance in 
transmitting the meaning of the utterance, while the latter 
utterance is more effective than the former utterance in 
transmitting information about the state of belief systems. 
Conversely, when the robot wants to ask the user to do 
something, the beliefs that it assumes to be shared are used 
in the same way. 
 We have proposed the method which copes with the 
above difficulty (Iwahashi 2003; Iwahashi 2007). In the 
method, robot’s belief system has a structure that reflects 
the state of the user’s belief system so that the user and the 
robot infer the state of each other’s belief systems (Fig. 3). 
This structure consists of the following two parts: 
1) Shared belief function (SBF), which models the 

assumption of shared beliefs and consists of a set of 
belief modules with values (the local confidence vector) 
that represent the degree of confidence that each belief is 
shared by the robot and the user. The beliefs used are 
those that concern speech, motions, static images of 
objects, behavioral context, and motion-object 
relationships. The output of this function is the sum of 
the outputs of all belief modules weighted by the local 

                                                 
1 Although use of a pronoun might be more natural than deletion of noun 
phrases in some languages, the same ambiguity in meaning exists in both 
such expressions. 

Figure 3:  Belief system of robot for pragmatic capability. 
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confidence vector, and it represents the degree of 
correspondence between an utterance and an action. 

2) Global confidence function (GCF), which represents 
the estimation of the difference between the shared 
beliefs assumed by the robot, i.e., SBF, and the shared 
beliefs assumed by the user. GCF is represented by a 
sigmoid function, and it outputs an estimate of the 
probability that the speaker’s utterance will be correctly 
understood by the listener. 
Through the interactive episodes, the robot can 

incrementally learn all the parameters of this belief system 
online. The parallel structure of SBF with minimum 
classification error and Bayesian learning methods can 
make the learning of the belief system fast. Using these 
functions, the robot can understand the user’s fragmental 
and ambiguous directive utterances, respond to them by 
acting, and generate confirmation questions, if necessary.  
 In addition, a method that detects users’ robot-directed 
speech has been proposed based on pragmatic capability 
(Zuo et al. 2010). 
Utterance understanding by robot. Given an utterance, 
the optimum action is that which maximizes the output of 
SBF. When the user utters directives to get the robot to 
move an object, the robot can move in response even if the 
utterances are fragmental and ambiguous. In experiments, 
approximately 80% in correct understanding rate was 
achieved for such fragmental utterances through about 
ninety episodes. An example of action generated as a result 
of a correct understanding of the user’s utterance “Place-
on” is shown in Fig. 4, along with the second action 
candidates. Output log-probabilities obtained from the 
belief modules weighted by the local confidence vector 
are also shown. It was found that nonlinguistic beliefs were 
used appropriately in understanding the utterance based on 
its relevance to the situation.  
Utterance generation by robot. Because GCF outputs the 
estimate of the probability that a speaker’s utterance will 
be correctly understood by a listener, the robot can control 
the ambiguity of its utterances. Hence, the robot can 
facilitate the formation of shared beliefs between a user 
and itself by adjusting the risk of being misunderstood in 
order to enable the user and the robot to infer each other’s 
inner state (Nakamura et al. 2009). 
 In addition, the robot can generate confirmation 
utterances if it decides that the user’s utterances are too 
ambiguous to execute an action immediately. This 
decision-making is based on expected utility (Sugiura et al. 
2009). The optimum response can be selected based on the 
threshold � of the output of the GCF of the optimum 
action. 
 An example of executed dialogue is shown in Fig. 5. 
Because the output of the GCF of the optimum action was 
less than � , a confirmation utterance was the optimum 
response. Therefore, the robot first asked whether “green 
box” was the trajector. Here, the word “green” was used to 
describe the major difference between Object 2 (green box) 
and Object 3 (blue box). In the second confirmation 
utterance, the word “blue” was inserted into the segment 

WT. In contrast, the landmark was not mentioned in either 
generated utterance, because no word insertion to WL had a 
large influence on the GCF output. 

Communicative Capability 
 In previous subsections, we have described the 
processing of directive utterances. So that the robot can 
communicate with users more naturally, however, it should 
classify users’ utterances into one of the types of speech 
acts in order to respond to them appropriately. The 
proposed learning method (Taguchi et al. 2009) enables 
the robot to return suitable utterances to a human or to 
perform actions by learning the meanings of interrogative 
words, such as “what” and “which.” The meanings of these 
words are grounded in communication and stimulate 
specific responses from a listener. The method learns the 
relationship between the user utterances and the robot 
responses. Hence, the robot can select any of the following 
responses to users’ utterances: moving an object, pointing 
at an object, or answering by an utterance. For example, a 

Figure 5:  Dialog example. Motion executed with 
confirmation utterances. The correct action is to move  
Object 3 (blue box) closer to Object 1 (red stuffed toy). 

[Situation: Object 2 was manipulated most recently] 
U: “Move-closer box Elmo.” 
R: “Move-closer green box?”  
U: “No.” 
R: “Move-closer blue box?”  
U: “Yes.” 
R: (The robot moves Object 3 closer to Object 1.) 

Figure 4:  An example of action generated as a result of 
correct understanding of utterance “Place-on” and weighted 
output log-probability from belief modules, along with 
second choices. 
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user asks “What place-on?” after he has placed an apple on 
a box. In this case, the robot can answer “Apple.” 

Conclusion and Future Work 
This paper described our developmental approach toward 
personally and physically situated human-robot 
conversations. The communication learning method LCore 
based on the approach satisfies three major requirements 
that existing language processing methods cannot, namely, 
grounding, scalability, and sharing.  
 Finally, we suggest solving two challenging problems 
for future work. The first is bridging the gap between 
nonlinguistic and linguistic computational processes in 
communication, which at present are completely different. 
A key to solving this problem could be role reversal 
imitation (Carpenter et al. 2005; Taniguchi et al. 2010), 
which is a basis of communication learning. The second 
problem is to enable learning of the displaced language in 
addition to language grounded in the physical world. To 
solve this problem, developing a computational mechanism 
for metaphors is essential. 
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